Fe₃O₄@N-doped carbon derived from dye wastewater flocculates as

heterogeneous catalyst for degradation of methylene blue

Jinhua Ou^{1,2}, Kejun Luo³, Hong Tan¹, Ni Li¹, Bonian Hu^{1*}, Gang Yu^{2*},

¹ School of Materials Science and Engineering, Hunan Institute of Technology,

Hengyang, 421002, China.

²College of Chemistry and Chemical Engineering, Hunan University, Changsha,

410082, China.

³Changsha Research Institute of Mining and Metallurgy Co., Ltd, Changsha, 410012, China.

Experimental

2.1 Materials

Iron pieces ($2 \times 55 \times 50 \text{ mm}^3$) were received from Feiyue Metal Products Co., Ltd., which was used as anode and cathode materials. Sigma-Aldrich provided all chemical reagents without further purification. The simulated dye wastewater contains 2.7 mM Malachite Green (MG) dye and 10 mM Na₂SO₄.

2.2 Characterizations

X-ray diffraction (XRD) measurements were carried out using an X-ray powder diffractometer (Smart Lab 9KW, Japan). The morphology of the sample was recorded via scanning electron microscopy (SEM, SU8220, Japan) and high-resolution transmission electron microscopy (HRTEM, Tecnai G2 F20,). X-ray photoelectron spectroscopy (XPS) patterns were collected using a non-monochromatic Al Ka X-ray source and a hemispherical energy analyzer (ESCALAB Xi+, English). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed on a STA PT1600 system in a nitrogen atmosphere with a heating rate of 0 °C min $^{-1}$ in the temperature range of 30 -1000 °C. N_2 adsorption-desorption isotherms were recorded using an automated gas sorption analyzer (BET, Autosorb-iQ-C, USA). EPR signals were recorded using a Bruker E500 spectro-meter. The settings for the EPR spectrometer were as follows: center field, 3502 G; sweep width, 100 G; power, 6.325mW. Ultraviolet-visible (UV-vis) spectra were recorded using the Shimadzu spectrophotometer (UV-3600 Plus, Japan). Magnetic hysteresis loops at room temperature were obtained using a VSM (LAKESHORE-7404, USA, ±2T/MH) at room temperature. The iron content of the sample obtained by microwave-digested samples and the iron concentration were determined using inductively coupled plasma (ICP-MS, NexION 300D).

Figure S1. The XRD pattern of Fe₃O₄@NC-30, Fe₃O₄@NC-40 and Fe₃O₄-20.

method	Electrolysis time	Removal	Concentrations	
	-	efficiency	(mg/L)	
EC	5 min	95.37%	46.3	
	10 min	99.08%	9.2	
	20 min	100%	undetected	
	30 min	100%	undetected	
	40 min	100%	undetected	

Table S1. The removal efficiency of MG dye with different electrolysis time.

Figure S2. TGA and DSC curve of MG dye molecular.

Figure S3. SEM images of the sample floc-20-r (Fe₃O₄-20 precursor).

Figure S4. (a, b) the HAADF-STEM images; (c) the EDX elemental mapping image

Figure S5. the BJH pore size distribution of $Fe_3O_4@NC-20$, $Fe_3O_4@NC-30$, $Fe_3O_4@NC-40$ and Fe_3O_4-20 .

Figure S6. XPS spectra of Fe₃O₄@NC-20.

Sample	catalyst dosage(g/L)	MB (ppm) /Volume	H ₂ O ₂ (mmol/L)	Time (min)	TOC (%) /MB (%)	leaching Fe (ppm)	References
Fe ₃ O ₄ @C	2.0	40 (10 ml)	16	40	68/100	0.5	[1]
Fe ₃ O ₄ @C	2.0	60 (20 ml)	293	300	65/90	-	[2]
Fe ₃ O ₄ /SiO ₂ /C	1.0	50 (20 ml)	440	15	96/68 ^a	-	[3]
Fe ₃ O ₄ /FeMnO _x	0.5	25 (200ml)	743	250	-/98	1	[4]
Fe ₃ O ₄ /TiO ₂	50	1600 (1ml)	990	5	-/99	-	[5]
Fe ₃ O ₄ @PDA- MnO ₂	0.17	40 (25ml)	1650	240	97.36	-	[6]
MoS ₂ -Fe ₃ O ₄	0.5	20 (100ml)	50	20	-/100	-	[7]
Fe ₃ O ₄ @MAFCC	0.6	50 (50 ml)	59.4	20	37.2/100	<2	[8]
Fe ₃ O ₄ /usGO	0.0029	5 (50 ml)	10	120	-/100	0.03	[9]
Fe ₃ O ₄ @NC-20	0.75	50 (20 ml)	239	50	64/100	0.435	This work

Table S2. Comparison of catalytic ability between Fe₃O₄@NC-20 and other reported Fe-based heterogeneous Fenton catalysts.

(-) Iron ions leaching is not reported. ^a COD removal (%).

		Magnetic properties			
Sample	Fe ₃ O ₄ (wt%)	Ms(emu/g)	Hc(Oe)	M _r (emu/g)	
Fe ₃ O ₄ @NC-20	55.02%	63.1	113.1	5.8	
Fe ₃ O ₄ @NC-30	66.21%	69.3	122.5	7.6	
Fe ₃ O ₄ @NC-40	73.47%	72.3	133.6	6.1	
Fe ₃ O ₄ -20	95.03%	76.2	142.3	5.3	

Table S3. Magnetic Properties and Iron Content of Fe₃O₄@NC-20, Fe₃O₄@NC-30,Fe₃O₄@NC-40 and Fe₃O₄-20.

Figure S7. Removal efficiency of MB dye. Reaction conditions: catalyst, 0.75 g L^{-1} ; H₂O₂, 239 mmol L^{-1} ; MB, 50 mg L^{-1} ; pH, 5.0.

References

- [1] L. Zhou, Y. Shao, J. Liu, Z. Ye, H. Zhang, J. Ma, Y. Jia, W. Gao, Y. Li, Preparation and characterization of magnetic porous carbon microspheres for removal of methylene blue by a heterogeneous Fenton reaction, ACS Appl Mater Interfaces 6 (2014) 7275-85.
- [2] Y. Shao, L. Zhou, C. Bao, J. Ma, A facile approach to the fabrication of rattle-type magnetic carbon nanospheres for removal of methylene blue in water, Carbon 89 (2015) 378-391.
- [3] R. Wang, X. Liu, R. Wu, B. Yu, H. Li, X. Zhang, J. Xie, S.-T. Yang, Fe₃O₄/SiO₂/C nanocomposite as a high-performance Fenton-like catalyst in a neutral environment, RSC Advances 6 (2016) 8594-8600.
- [4] S. Xing, Z. Zhou, Z. Ma, Y. Wu, Characterization and reactivity of Fe₃O₄/FeMnO_x core/shell nanoparticles for methylene blue discoloration with H₂O₂, Applied Catalysis B: Environmental 107 (2011) 386-392.
- [5] M. Abbas, B. P. Rao, V. Reddy, C. Kim, Fe₃O₄/TiO₂ core/shell nanocubes: Singlebatch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation, Ceramics International 40 (2014) 11177-11186.
- [6] X. Pan, S. Cheng, T. Su, G. Zuo, W. Zhao, X. Qi, W. Wei, W. Dong, Fenton-like catalyst Fe₃O₄@polydopamine-MnO₂ for enhancing removal of methylene blue in wastewater, Colloids Surf B Biointerfaces 181 (2019) 226-233.
- [7] K. Shen, Y. Cui, D. Zhang, M. Liu, H. Huang, X. Sha, F. Deng, N. Zhou, X. Zhang,
 Y. Wei, Biomimetic preparation of MoS₂-Fe₃O₄ MNPs as heterogeneous catalysts for the degradation of methylene blue, Journal of Environmental Chemical Engineering 8 (2020).
- [8] Q. Lu, Y. Zhang, H. Hu, W. Wang, Z. Huang, D. Chen, M. Yang, J. Liang, In Situ Synthesis of a Stable Fe₃O₄@Cellulose Nanocomposite for Efficient Catalytic Degradation of Methylene Blue, Nanomaterials (Basel) 9 (2019).
- [9] S. Song, Y. Wang, H. Shen, J. Zhang, H. Mo, J. Xie, N. Zhou, J. Shen, Ultrasmall Graphene Oxide Modified with Fe₃O₄ Nanoparticles as a Fenton-Like Agent for Methylene Blue Degradation, ACS Applied Nano Materials 2 (2019) 7074-7084.