Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supporting Information (ESI) for

Pyrazinium-based Fluorescent Chemosensor for Selective Detection of 2,4,6-trinitrophenol in Aqueous Medium

Pragya,^a Vaishali Saini,^a Krishnan Rangan,^b Bharti Khungar^{a*} ^aDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani, Rajasthan, 333031, India ^bDepartment of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Secunderabad, Telangana, 500078, India *E-mail address*: <u>bkhungar@pilani.bits-pilani.ac.in</u>

Table of contents

- Fig. S1. ¹H NMR of **TPyz**
- Fig. S2. ¹³C NMR of **TPyz**
- Fig. S3. HRMS of **TPyz**
- Fig. S4. ¹H NMR of **BTPyz**
- Fig. S5. ¹³C NMR of **BTPyz**
- Fig. S6. HRMS of BTPyz
- Fig. S7. UV-vis and fluorescence spectra of BTPyz
- Fig. S8. Absorbance and fluorescence response of BTPyz towards TNP in different solvents
- Fig. S9. Fluorescence quenching percentage of *p*-cresol, 4-NP, 2,4-DNP and TNP
- Fig. S10. Selectivity of **BTPyz** towards TNP in the presence of anions, cations, and organic analytes
- Fig. S11. Effect of pH on fluorescence intensity
- Fig. S12. Stern–Volmer plot of BTPyz using TNP as a quencher
- Fig. S13. Spectral overlap between the normalized emission spectrum of **BTPyz** and normalized absorption spectra of different analytes
- Fig. S14. Fluorescence lifetime decay curves of BTPyz and BTPyz-TNP
- Fig. S15. Emission intensity of BTPyz observed and after inner filter effect corrections
- Fig. S16. Fluorescence spectra of BTPyz and BTPyz with TFA
- Fig. S17. ¹H NMR of **BTPyz-**TNP complex
- Fig. S18. HRMS of BTPyz-TNP complex

Fig. S19. HOMO-LUMO energy levels of BTPyz and organic analytes

Fig. S20. Fluorescence quenching of TNP in soil samples

List of tables

- Table S1 A comparison of literature reported Chemosensors for TNP detection
- Table S2 Calculations of inner filter effect corrections for quenching of BTPyz by TNP
- Table S3 Single-crystal XRD data and structure refinement of **BTPyz** and **BTPyz-**TNP complex
- Table S4 Bond Lengths of BTPyz
- Table S5 Bond Angles of **BTPyz**
- Table S6 Bond Lengths of BTPyz-TNP complex

Table S7 Bond Angles of BTPyz-TNP complex

Fig. S1 ¹H NMR of TPyz

Fig. S2 ¹³C NMR of Tpyz

Fig. S3 HRMS of TPyz

Fig. S4 ¹H NMR of BTPyz

Fig. S5 ¹³C NMR of BTPyz

Fig. S6 HRMS of BTPyz

Fig. S7 UV-vis and fluorescence spectra of BTPyz

Fig. S8 (a) Absorbance (b) Fluorescence response of BTPyz towards TNP in different solvents

Fig. S9 Fluorescence quenching percentage of p-cresol, 4-NP, 2,4-DNP and TNP

Fig. S10 Selectivity of BTPyz towards TNP in the presence of (a) anions, (b) cations, and (c) organic analytes

Fig. S11 Effect of pH on fluorescence intensity

Methods

Photophysical studies

For photophysical studies, 10 mM stock solutions of **BTPyz** and different analytes (cations, anions and organic analytes) were prepared in Milli-Q water. The stock solutions of 4-nitrotoluene (NT), 3,4-dinitrotoluene (3,4-DNT), and 4-nitrobenzoic acid (NBA) were prepared in UV grade THF.

Quantum yield calculation¹

The fluorescence quantum yield was executed using quinine sulfate as a reference in 0.1 M H₂SO₄ ($\Phi_R = 0.54$) and calculated using the following equation

$$\Phi_{\rm S} = \Phi_{\rm R} \frac{I_{\rm S}}{I_{\rm R}} \times \frac{A_{\rm R}}{A_{\rm S}} \times \frac{\eta_{\rm S}^2}{\eta_{\rm R}^2}$$

Where I = integrated area under the fluorescence curve, A = absorbance at the excitation wavelength, η = refractive index of the medium and Φ = fluorescence quantum yield. Subscripts S and R refer to the sample and the reference standard, respectively.

Fluorescence quenching percentage calculation²

The fluorescence quenching percentage was calculated using the equation

Fluorescence quenching
$$\% = \left(1 - \frac{I}{I_0}\right) \times 100\%$$

Where I_0 = initial fluorescence intensity in the absence of analyte, I = fluorescence intensity in the presence of analyte.

Overlap Integral Calculations³

Analytes Overlap integral values were calculated using the equation

$$J(\lambda) = F_D(\lambda)\varepsilon_A(\lambda)\lambda^4 d\lambda$$

Where $F_D(\lambda)$ represents the corrected fluorescence intensity of donor in the range of λ to $\lambda + \Delta \lambda$ with the total intensity normalized to unity. ε_A is the molar absorptivity of the acceptor at λ in M⁻¹ cm⁻¹.

The Förster distance R_0 was calculated for **BTPyz**-TNP interaction using the equation

$$R_0 = 0.211 \, [(J)Q \, (\eta^{-4})(\kappa^2)]^{1/6}$$

Where *J* is the degree of spectral overlap between the donor fluorescence spectrum and the acceptor absorption spectrum. Q = 0.30; fluorescence quantum yield of the donor (without acceptor). η is the refractive index of the medium, κ^2 (dipole orientation factor) = 0.667.

Fig. S12 Stern–Volmer plot of BTPyz using TNP as a quencher

S.	Publication	Material used	Detection	Stern-Volmer	Medium
No.			Limit	constant	used
1	Present Study	Pyrazinium-based	11.6 nM	$3.8 \times 10^4 \text{ M}^{-1}$	Aqueous medium
2	H. M. Junaid, M. T. Waseem, Z. A. Khan, H. Gul, C. Yu, A. J. Shaikh and S. A. Shahzad, <i>J.</i> <i>Photochem. Photobiol. A:</i> <i>Chem.</i> , 2022, 428 , 113865	Fluorene-based	0.5 nM	_	Aqueous medium
3	H. Muniyasamy, C. Chinnadurai, M. Nelson, A. Veeramanoharan, M. Sepperumal and S. Ayyanar, <i>Ind. Eng. Chem.</i> <i>Res.</i> , 2021, 60 , 7987–7997	Triazine derivative	209 nM	1.02 mM,	Aqueous medium
4	C. Gogoi, H. Reinsch and S. Biswas, <i>CrystEngComm</i> , 2019, 21 , 6252–6260.	Organic framework	13.08 ppb	$4.56 \times 10^5 \text{M}^{-1}$	Aqueous medium
5	N. Tripathi, P. Singh and S. Kumar, <i>New J. Chem.</i> , 2017, 41 , 8739–8747	Pyridinium-based	10 ⁻¹³ M	$6.73 \times 10^8 M^{-1}$	Aqueous media
6	A. S. Tanwar and P. K. Iyer, <i>ACS Omega</i> , 2017, 2 , 4424–4430	Pyridinium-based	295 nM	-	HEPES Buffer (pH- 7)
7	S. Kumari, S. Joshi, T. C. Cordova-Sintjago, D. D. Pant and R. Sakhuja, <i>Sens.</i> <i>Actuators B Chem.</i> , 2016, 229 , 599–608	Imidazolium-based	107 nM and 87 nM	$\begin{array}{c} 5\times 10^{4}M^{-1}\\ and\\ 2.2\times 10^{4}M^{-1}\\ \end{array}$	Aqueous media
8	A. Kumar, A. Pandith and H. S. Kim, <i>Sens.</i> <i>Actuators B Chem.</i> , 2016, 231 , 293–301	Imidazolium-based	10 nM	$1.01 \times 10^{6} \mathrm{M^{-1}}$	Aqueous medium

9	A. H. Malik, S. Hussain, A. Kalita and P. K. Iyer, ACS Appl. Mater. Interfaces, 2015, 7 , 26968–26976.	Imidazolium-based	7.07 ppt	1.12×10 ⁸ M ⁻¹	Aqueous media
10	S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer, <i>Chem. Commun.</i> , 2015, 51 , 7207–7210	Imidazolium-based	128 ppt	$0.1 \times 10^8 M^{-1}$	Aqueous media
11	S. Sandhu, R. Kumar, P. Singh, A. Mahajan, M. Kaur and S. Kumar, <i>ACS</i> <i>Appl. Mater. Interfaces</i> , 2015, 7 , 10491–10500	Benzimidazolium- based	$5 \times 10^{-13} \mathrm{M}$	$4.8 \times 10^5 \text{M}^{-1}$	H ₂ O: DMSO
12	S. Pramanik, V. Bhalla and M. Kumar, <i>Anal. Chim.</i> <i>Acta</i> , 2013, 793 , 99–106	Hexaphenylbenzene derivative	6.87 ppb	$1.92 \times 10^5 \text{M}^{-1}$	Aqueous medium

Fig. S13 Spectral overlap between the normalized emission spectrum of BTPyz and normalized absorption spectra of different analytes

Fig. S14 Fluorescence lifetime decay curves of BTPyz and BTPyz-TNP

TNP [µM]	A _{em}	A _{ex}	I _{obs}	Icorr	$I_{\rm corr}/I_{\rm obs}$	Icorr/Iobs,0
0	0.000152	0.01867	1080000	1104967	1.021906	0
5	0.000426	0.02137	1000000	1028167	1.024959	0.93049
10	0.000211	0.02499	884830	910878.6	1.029439	0.82434
15	0.00157	0.02871	742340	768675.2	1.035476	0.69565
20	0.00252	0.03054	608020	631608.4	1.038795	0.57160
25	0.00395	0.03063	499450	519735.1	1.040615	0.47036
30	0.00573	0.03168	384120	401025.4	1.044011	0.36292
35	0.00688	0.03224	293830	307366.2	1.046068	0.27816
40	0.00755	0.03474	225310	236551.4	1.049893	0.21407
45	0.00786	0.03685	169340	178284.9	1.052822	0.16134
50	0.00761	0.0395	128660	135830.9	1.055735	0.12292

Table S4 Calculations of inner filter effect corrections for quenching of BTPyz by TNP

Fig. S15 Emission intensity of BTPyz observed and after inner filter effect corrections

Fig. S16 Fluorescence spectra of BTPyz and BTPyz with TFA

Fig. S17 ¹H NMR of BTPyz-TNP complex

Fig. S18 HRMS of BTPyz-TNP complex

420 440

400

460 480

180

200

220

240 260

Fig. S19 HOMO-LUMO energy levels of BTPyz and organic analytes

Fig. S20. Fluorescence quenching of TNP in soil samples

Compound	BTPyz	BTPyz -TNP complex
Empirical formula	C _{19.5} H ₁₇ BrN ₂ O _{0.5} S ₂	$C_{25}H_{17}N_5O_7S_2$
Formula weight	431.38	563.55
Temperature/K	293(2)	93(2)
Crystal system	Monoclinic	monoclinic
Space group	$P2_1/n$	C2/c
a/Å	13.6130(2)	18.0779(3)
b/Å	18.6032(2)	20.0433(3)
c/Å	15.0166(2)	14.3377(3)
α/°	90	90
β/°	90.2640(10)	111.423(2)

Table S3 Single-crystal XRD data and structure refinement of BTPyz and BTPyz-TNP complex

$\gamma/^{\circ}$	90	90
Volume/Å ³	3802.84(9)	4836.20(16)
Z	8	8
$\rho_{calc}g/cm^3$	1.507	1.548
μ/mm^{-1}	5.049	2.513
F(000)	1752.0	2320.0
Crystal size/mm ³	$0.1 \times 0.1 \times 0.08$	$0.15\times0.1\times0.04$
Radiation	Cu Ka ($\lambda = 1.54184$)	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.566 to 159.874	8.094 to 159.676
Index ranges	$\begin{array}{l} \textbf{-14} \leq h \leq 17, \textbf{-23} \leq k \leq 22, \textbf{-16} \\ \leq l \leq 19 \end{array}$	$\begin{array}{l} -21 \leq h \leq 23, -25 \leq k \leq 24, - \\ 17 \leq l \leq 18 \end{array}$
Reflections collected	15315	14206
Independent reflections	7340 [R _{int} = 0.0249, R _{sigma} = 0.0296]	5121 [$R_{int} = 0.0327$, $R_{sigma} = 0.0347$]
Data/restraints/parameters	7340/0/453	5121/0/352
Goodness-of-fit on F ²	1.104	1.093
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0487, wR_2 = 0.1321$	$R_1 = 0.0473, wR_2 = 0.1418$
Final R indexes [all data]	$R_1 = 0.0504, wR_2 = 0.1333$	$R_1 = 0.0504, wR_2 = 0.1451$
Largest diff. peak/hole / e Å $^{\text{-3}}$	1.48/-0.93	0.44/-0.34
CCDC No.	2110747	2168277

Table S4 Bond Lengths of BTPyz

Atom	Atom	Length/Å	Atom Atom	Length/Å
S 1	C5	1.726(3)	C14 C15	1.390(5)
S 1	C8	1.707(4)	C14 C13	1.504(5)
S101	C105	1.727(4)	C14 C19	1.388(5)

S101	C108	1.706(4)	C104	C103	1.395(5)
S2	C9	1.721(3)	C104	C109	1.453(5)
S2	C12	1.705(4)	C15	C16	1.394(5)
S102	C109	1.720(3)	C114	C113	1.512(5)
S102	C112	1.701(4)	C114	C00X	1.392(5)
N1	C1	1.344(4)	C114	C115	1.389(5)
N1	C4	1.342(4)	C105	C106	1.386(5)
N2	C2	1.340(4)	C6	C7	1.425(5)
N2	C3	1.338(4)	C16	C17	1.381(6)
N2	C13	1.492(4)	C109	C110	1.391(5)
N101	C101	1.343(5)	C106	C107	1.428(5)
N101	C104	1.341(5)	C110	C111	1.421(5)
N102	C102	1.337(5)	C00X	C118	1.397(5)
N102	C113	1.501(4)	C11	C12	1.355(5)
N102	C103	1.338(4)	C19	C18	1.389(6)
C1	C5	1.453(5)	C116	C115	1.405(6)
C1	C2	1.392(4)	C116	C117	1.376(6)
C101	C102	1.404(4)	01	C20	1.463(9)
C101	C105	1.450(5)	C17	C18	1.390(6)
C4	C3	1.394(4)	C7	C8	1.358(6)
C4	C9	1.443(5)	C111	C112	1.358(5)
C5	C6	1.390(5)	C108	C107	1.360(6)
C10	C9	1.395(5)	C117	C118	1.381(6)
C10	C11	1.417(5)			

Angle/° Angle/° Atom Atom Atom Atom Atom Atom C8 **S**1 C5 C103 C104 C109 91.48(17) 121.1(3) C108 S101 C105 91.34(18) N102 C102 C101 118.4(3) C12 **S**2 C9 91.70(17) C14 C15 C16 120.2(4) C112 C109 C00X C114 S102 91.72(18) C113 120.1(3) C4 N1 C1 C115 C114 117.9(3) C113 120.1(3) C2 N2 C13 C115 C114 C00X 119.9(3) 119.8(3) C101 C105 C3 N2 C2 121.6(3) S101 119.4(3) C3 N2 C13 118.5(3) C106 C105 S101 111.8(3) C104 N101 C101 C106 C105 C101 118.7(3) 128.8(3) C113 C102 N102 N102 C113 119.4(3) C114 110.9(3) C102 N102 C103 121.8(3) C5 C6 C7 111.1(3) C103 N102 C113 118.8(3) C17 C16 C15 119.5(4) N1 C1 C5 N2 C13 C14 117.6(3) 110.4(3) N1 C1 N102 C103 C104 C2 122.2(3) 118.7(3) C2 C1 C5 C104 C109 S102 120.2(3) 119.9(3) N101 C101 C102 121.1(3) C110 C109 S102 111.4(3) N101 C101 C105 C110 C109 C104 118.2(3) 128.5(3) C102 C101 C105 120.7(3) C105 C106 C107 111.4(3) N1 C4 C3 C109 C110 121.4(3) C111 111.4(3) N1 C4 C9 118.7(3) C114 C00X C118 120.4(4)C3 C4 C9 119.9(3) C12 C11 C10 113.1(3) C1 C5 **S**1 C14 C19 C18 119.8(3) 120.2(4)C6 C5 **S**1 C117 C116 111.8(2) C115 119.5(4)

Table S5 Bond Angles of BTPyz

C6	C5	C1	128.4(3)	C114	C115	C116	119.8(4)
N2	C2	C1	118.0(3)	C16	C17	C18	120.8(4)
C9	C10	C11	111.4(3)	C8	C7	C6	113.2(3)
C15	C14	C13	119.9(3)	C112	C111	C110	112.8(4)
C19	C14	C15	119.9(3)	C11	C12	S2	112.5(3)
C19	C14	C13	120.2(3)	C7	C8	S 1	112.5(3)
N2	C3	C4	118.9(3)	C107	C108	S101	112.9(3)
C4	C9	S2	120.9(2)	C116	C117	C118	121.5(4)
C10	C9	S2	111.2(3)	C117	C118	C00X	119.0(4)
C10	C9	C4	127.8(3)	C108	C107	C106	112.6(4)
N101	C104	C103	121.3(3)	C111	C112	S102	112.7(3)
N101	C104	C109	117.6(3)	C19	C18	C17	119.4(4)

Table S6 Bond Lengths of BTPyz-TNP complex

Atom	Atom	Length/Å	Atom	Atom	Length/Å
<u>S2</u>	С9	1.7221(18)	C1	C2	1.405(2)
S2	C12	1.707(2)	C1	C5	1.449(3)
S 1	C5	1.7240(19)	C24	C23	1.398(3)
S 1	C8	1.696(2)	C24	C25	1.363(2)
01	C20	1.241(2)	C6	C5	1.409(3)
05	N4	1.238(2)	C6	C7	1.416(3)
O4	N4	1.229(2)	C23	C22	1.385(2)
N2	C2	1.339(2)	C10	C9	1.381(3)
N2	C3	1.343(2)	C10	C11	1.415(2)
N2	C13	1.502(2)	C22	C21	1.379(2)

N1	C4	1.343(3)	C14	C19	1.388(3)
N1	C1	1.337(2)	C14	C13	1.504(2)
N4	C23	1.437(2)	C14	C15	1.397(2)
06	N5	1.220(2)	C20	C25	1.453(2)
N3	03	1.206(2)	C20	C21	1.448(3)
N3	O2	1.220(2)	C19	C18	1.388(3)
N3	C21	1.463(2)	C15	C16	1.388(3)
N5	07	1.204(2)	C18	C17	1.385(3)
N5	C25	1.467(3)	C11	C12	1.359(3)
C4	C3	1.397(2)	C7	C8	1.364(3)
C4	C9	1.453(2)	C16	C17	1.392(3)

Table S7 Bond Angles of BTPyz-TNP complex

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C12	S2	C9	91.42(9)	C21	C22	C23	120.01(17)
C8	S 1	C5	91.27(10)	C4	C9	S2	120.14(14)
C2	N2	C3	121.56(15)	C10	C9	S2	111.62(13)
C2	N2	C13	119.88(15)	C10	C9	C4	128.24(17)
C3	N2	C13	118.56(16)	C19	C14	C13	120.43(16)
C1	N1	C4	118.97(15)	C19	C14	C15	119.58(17)
05	N4	C23	118.13(16)	C15	C14	C13	119.96(17)
O4	N4	O5	122.57(16)	O 1	C20	C25	121.06(18)
O4	N4	C23	119.28(16)	01	C20	C21	127.49(18)
03	N3	O2	122.32(18)	C21	C20	C25	111.43(15)

03	N3	C21	118.95(17)	C1	C5	S 1	118.97(14)
02	N3	C21	118.73(18)	C6	C5	S 1	111.91(14)
06	N5	C25	117.60(17)	C6	C5	C1	129.10(17)
07	N5	O6	123.81(19)	C24	C25	N5	117.89(17)
07	N5	C25	118.58(18)	C24	C25	C20	126.22(18)
N1	C4	C3	121.16(16)	C20	C25	N5	115.86(16)
N1	C4	C9	118.20(16)	C22	C21	N3	116.34(17)
C3	C4	C9	120.64(17)	C22	C21	C20	123.34(16)
N1	C1	C2	121.17(17)	C20	C21	N3	120.32(16)
N1	C1	C5	117.97(16)	C18	C19	C14	120.51(17)
C2	C1	C5	120.85(16)	N2	C13	C14	110.28(14)
C25	C24	C23	117.35(17)	C16	C15	C14	119.84(18)
C5	C6	C7	110.43(17)	C17	C18	C19	119.90(19)
C24	C23	N4	118.75(16)	C12	C11	C10	112.92(18)
C22	C23	N4	119.72(16)	C8	C7	C6	113.16(18)
C22	C23	C24	121.36(16)	C15	C16	C17	120.16(18)
C9	C10	C11	111.70(17)	C11	C12	S2	112.34(14)
N2	C2	C1	118.47(16)	C18	C17	C16	120.00(18)
N2	C3	C4	118.64(17)	C7	C8	S 1	113.23(17)

References

- 1 D. Prabha, D. Singh, P. Kumar and R. Gupta, *Inorg. Chem.*, 2021, **60**, 17889–17899.
- 2 N. Tripathi, P. Singh and S. Kumar, *New J. Chem.*, 2017, **41**, 8739–8747.
- 3 S. Hussain, A. H. Malik, M. A. Afroz and P. K. Iyer, *Chem. Commun.*, 2015, **51**, 7207–7210.