Supplementary Information

Air-Stable Cesium Lead Bromide Perovskite Nanocrystals *via* Post-Synthetic Treatment with Oleylammonium Bromides

Jusun Park,^{a,b} Seohee Park,^{a,c} Seongwoo Cho,^{a,d} Youngsik Kim,^b Hyojung Kim,^b Sohee Jeong,^{*,b} and Ju Young Woo^{*,a,d}

^a Digital Transformation R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Republic of Korea

^b Department of Energy Science, Artificial Atom and Quantum Materials Center, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea

^c HYU-KITECH Joint Department, Hanyang University, Ansan 15588, Republic of Korea

^d Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea

Corresponding Author

*Email: jywoo@kitech.re.kr and s.jeong@skku.edu

Fig. S1 Size histograms of (a) fresh pristine-CsPbBr₃ NCs and (b) air-exposed pristine-CsPbBr₃ NCs. Average sizes of (a) and (b) are 8.4 and 37.2 nm, respectively. Size histograms of (c) fresh OLABr-CsPbBr₃ NCs and (d) air-exposed OLABr-CsPbBr₃ NCs. Average sizes of (c) and (d) are 7.9 and 8.0 nm, respectively.

Fig. S2 Normalized PL spectra of (black) pristine-CsPbBr₃ NCs ($\lambda_{peak} = 516$ nm) and (green) OLABr-CsPbBr₃ NCs ($\lambda_{peak} = 512$ nm). A blue shift (~4 nm) was observed upon oleylammnoium bromide post-treatment.

Fig. S3 Normalized absorption spectra of (black) pristine-CsPbBr₃ NCs and (green) OLABr-CsPbBr₃ NCs.

Fig. S4 XRD patterns of (black) pristine- and (green) OLABr-CsPbBr₃ NCs with reference patterns (ICSD 98-009-7852). Asterisk corresponds to the scattering peak from the sample holder.

Fig. S5 Time-resolved photoluminescence data of (black) pristine-CsPbBr₃ NCs and (green) OLABr-CsPbBr₃ NCs.

Compound	PL QY (Before treatment)	PL QY (After treatment)	Reported stability enhancement	Ref.
CsPbBr ₃	75%	95%	Air stability, thermal stability, UV stability, stability against polar solvent.	1
CsPbBr ₃	69.8±2%	97±2%	Air stability, UV stability, stability against polar solvent.	2
CsPbBr ₃	50.91%	99.34%	Air stability, UV stability, stability against polar solvent.	3
CsPbBr ₃	72%	89%	N.A.	4
CsPbBr ₃	54%	98%	Air stability	5
CsPbI ₃	87%	~100%	Air stability, thermal stability	6
CsPbI ₃	52.3%	82.4%	air stability, phase stability	7
CsPbBr ₃	70%	81%	Photo-stability	8
CsPbBr ₃	-	-	Phase stability, stability against polar solvent	9
CsPbI ₃	80±5%	95±2%	Air stability	10
CsPbI ₃	34%	89%	Thermal stability, device stability	11
CsPbBr ₃	92±2%	99±2%	Air stability, UV stability	12
CsPbI ₃	22%	51%	UV stability, phase stability, stability against polar solvent	13
CsPbBr ₃	54%	83%	N.A.	14
CsPbBr ₃	73%	100%	UV stability, thermal stability, stability against polar solvent	15
CsPbBr ₃	49%	71%	N.A	16
CsPbBr ₃ CsPbI ₃	80% 80%	93% 95%	N.A	17
CsPbCl ₃ CsPbBr ₃	<10% 60-80%	~100% ~100%	N.A	18
CsPbI ₃	-	~80%	Thermal stability, air stability	19
CsPbBr ₃ CsPbI ₃ CsPbCl ₃	-	~90% 55% 65%	Air stability	20
CsPbI ₃	27±3%	96±2%	Air stability	21

Table S1. Summary of the effects of post-synthetic treatment on PL QY and stability reported in other studies.

CsPbBr ₃ CsPbI ₃ CsPbCla	-	99±1% 96±1% 70+2%	Air stability, UV stability	22
CsPbI ₃	70.2%	96%	Air stability	23
CsPbBr ₃	-	99%	Air stability, UV stability	24
CsPbBr ₃	34.8%	32.3%	Air stability	25
CsPbI ₃	28.6%	~100%	Stability against polar solvent	26
CsPbBr ₃	54%	98%	Air stability	27
CsPbBr ₃	~35%	~100%	Air stability, UV stability	28
CsPbBr ₃	~25%	~99%	Air stability, UV stability	29
CsPbBr ₃	~15%	~100%	UV stability, thermal stability	30
CsPbBr ₃	74%	89%	Air stability	31
CsPbBr ₃	70%	92%	Stability against polar solvent, UV stabil	32
CsPbBr ₃	65.89%	95.79%	Air stability	33
CsPbBr ₃	85%	92%	Air stability	34
CsPbBr ₃	65%	98%	Air stability, stability against polar solve	35
CsPbBr ₃	54.32%	82.77%	Air stability, thermal stability	36
CsPbBr ₃	48±5%	90±7%	Air stability, thermal stability	37
CsPbBr ₃	52%	74%	-	38
CsPbBr ₃	-	~100%	Air stability, stability against polar solve nt, thermal stability	39
CsPbCl ₃	1.9%	5.8%	Air stability, UV stability, stability again	40
CsPbBr ₃	75.5%	100%	st polar solvent	
CsPbI ₃	49.4%	97%	-	
CsPbBr ₃	61%	76%	UV stability, stability against polar solve nt	41
CsPbBr ₃	-	83%	Air stability, stability against polar solve nt, UV stability, thermal stability	42
CsPbBr ₃	~68±8%	95±4%	Thermal stability	43
CsPbBr ₃	56.7%	82.9%	UV stability, stability against polar solve nt	44

CsPbI ₃	60%	87.0%	N.A	45
CsPbBr ₃	72%	~95%	Air stability, UV stability, thermal stabil ity	46
CsPbCl ₃ CsPbBr ₃	11% 22%	88% 90%	Air stability, UV stability	47
CsPbI ₃	63%	87%	Air stability	48
CsPbI ₃	52%	93%	Air stability, UV stability	49
CsPbBr ₃	-	92%	Air stability, thermal stability	50
CsPbBr ₃	-	96.8%	N.A	51
CsPbI ₃	52.3%	82.4%	Air stability, UV stability	52
CsPbBr ₃	-	99.8%	Air stability, stability against polar solve nt, thermal stability. UV stability	53
CsPbBr ₃	60-80%	75-85%	Air stability	54
CsPbBr ₃	54%	78%	Air stability, thermal stability	55
CsPbBr ₃	-	Slightly higher	Air stability, stability against polar solve nt. UV stability	56
CsPbI ₃	-	Slightly higher	Air stability	57
CsPbI ₃	-	63.7%	Air stability, UV stability, stability again st polar solvent	58
CsPbBr ₃	53%	85%	Air stability	59
CsPbBr ₃	10.9%	24.2%	N.A	60
CsPbI ₃	~90%	~100%	Air stability	61
CsPbI ₃	-	80%	Air stability	62
CsPbCl ₃	1-5%	~50%	Air stability, stability against polar solve	63
CsPbI ₃	-	Slightly higher	Air stability, stability against polar solve nt	64
CsPbI ₃	75%	96%	Air stability, thermal stability	65
CsPbBr ₃	40%	98%	Air stability, thermal stability, UV stabil ity	66
CsPbBr ₃	-	>90%	Air stability, UV stability	67

CsPbI ₃	61.8%	98.5%	Air stability, UV stability, thermal stabil	68
CsPbI ₃	60%	81%	Air stability	69

Fig. S6 TEM images of CsPbBr₃ NCs post-treated with (a) oleic acid, (b) oleylamine, and (c) PbBr₂ after exposure to air. Scale bars are 100 nm.

Fig. S7 XRD patterns of smaller size pristine-CsPbBr₃ NCs ($\lambda_{PL} \sim 512$ nm) before and after air exposure.

Fig. S8 Schematic of selective ligand exchange in CsPbBr₃ NCs employing methyl acetate (MeOAc).

Fig. S9 ¹H-NMR spectra of pristine-CsPbBr₃ NCs after purification without MeOAc. Broad resonances around 7.5 ppm and 4.0 ppm can be assigned to weakly bound oleylammoniums.

Fig. S10 Normalized XPS spectra of CsPbBr₃ NCs (black) before and (green) after treatment with oleylammonium bromide. Binding energy shift to high energy side of OLABr-CsPbBr₃ NCs in (b) and (c) supports the increase of Pb and Br compared to pristine-CsPbBr₃ NCs.

Fig. S11 CsPbBr₃ NC models ((a) pristine-CsPbBr₃ NC and (b) OLABr-CsPbBr₃ NC) proposed in our study. It is noted that the models are based on the NCs after purifications.

References

(1) S. Akhil, V. G. V. Dutt, R. Singh and N. Mishra, *J. Phys. Chem. C*, 2022, **120**, 10742-10751.
(2) V. G. V. Dutt, S. Akhil, R. Singh, M. Palabathuni and N. Mishra, *J. Phys. Chem. C*, 2022, **126**, 9502-9508.

(3) J. Qiu, W. Xue, W. Wang and Y. Li, Dyes. Pigm., 2022, 198, 109806-109813

(4) M. R. Subramaniam, A. K. Paramod, S. A. Hevia and S. K. Batabyal, *J. Phys. Chem. C*, 2022, **126**, 1462-1470

(5) M. A. Uddin, J. K. Mobley, A. A. Masud, T. Liu, R. L. Calabro, D. Y. Kim, C. I. Richards and K. R. Graham, *J. Phys. Chem. C*, 2019, **123**, 18103-18112

(6) Y. F. Lan, J. S. Yao, J. N. Yang, Y. H. Song, X. C. Ru, Q. Zhang, L. Z. Feng, T. Chen, K. H. Song and H. B. Yao, *Nano Lett.*, 2021, **21**, 8756-8763

(7) K. A. Huynh, S. R. Bae, T. V. Nguyen, H. H. Do, D. Y. Heo, J. Park, T. W. Lee, Q. V. Le, S. H. Ahn and S. Y. Kim, *ACS Photonics*, 2021, **8**, 1979-7987

(8) M. Liu, Z. Li, W. Zheng, L. Kong and L. Li, Front. Mater., 2019, 6, 306

(9) L. Ruan, W. Shen, A. Wang, Q. Zhou, H. Zhang and Z. Deng, *Nanoscale*, 2017, **9**, 7252-7259

(10) J. Pan, Y. Shang, J. Yin, M. D. Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. E. Zohry, M. N. Hedhili, A. H. Emwas, O. F. Mohammed, Z. Ning and O. M. Bakr, *J. Am. Chem. Soc.*, 2018, 140, 562-565

(11) H. Wang, N. Sui, X. Bai, Y. Zhang, Q. Rice, F. J. Seo, Q. Zhang, V. L. Colvin and W. W. Yu, *J. Phys. Chem. Lett.*, 2018, **9**, 4166-4173

(12) H. Li, H. Lin, D. Ouyang, C. Yao, C. Li, J. Sun, Y. Song, Y. Wang, Y. Yan, Y. Wang, Q. Dong and W. C. H. Choy, *Adv. Mater.*, 2021, **33**, 2008820

(13) C. Bi, S. V. Kershaw, A. L. Rogach and J. Tian, *Adv. Funct. Mater.*, 2019, 29, 1902446
(14) F. D. Stasio, S. Christodoulou, N. Huo and G. Konstantatos, *Chem. Mater.*, 2017, 29, 7663-7667

(15) C. Zheng, C. Bi, F. Huang, D. Binks and J. Tian, ACS Appl. Mater. Interfaces, 2019, 11, 25410-25416(16) J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr, Adv. Mater., 2016, 28, 8718-8725

(17) G. Li, J. Huang, H. Zhu, Y. Li, J. X. Tang and Y. Jiang, *Chem. Mater.*, 2018, **30**, 6099-6107

(18) A. Dutta, R. K. Behera, P. Pai, S. Baitalik and N. Pradhan, *Angew. Chem. Int. Ed.*, 2019, **58**, 5552-5556

(19) Q. A. Akkerman, L. M. Sarti, L. Goldoni, M. Imran, D. Baranov, H. J. Bolink, F. Palazon and L. Manna, *Chem. Mater.*, 2018, **30**, 6915-6921

(20) M. Imran, V. Caligiuri, M. Wang, L. Goldoni, M. Prato, R. Krahne, L. D. Trizio and L. Manna, *J. Am. Chem. Soc.*, 2018, **140**, 2656-2664

(21) S. Das and A. Samanta, ACS Energy Lett., 2021, 6, 3780-3787

(22) S. Das and A. Samanta, Nanoscale, 2022, 14, 9349-9358

(23) Y. Cai, H. Wang, Y. Li, L. Wang, Y. Lv, X. Yang and R. J. Xie, *Chem. Mater.*, 2019, **31**, 881-889

- (24) S. Paul and A. Samanta, ACS Energy Lett., 2020, 5, 64-69
- (25) C. Lu, H. Li, K. Kolodziejski, C. Dun, W. Huang, D. Carroll and S. M. Geyer, *Nano Res.*, 2018, **11**, 762-768
- (26) M. Liu, L. Ma, K. Xie, P. Zeng, S. Wei, F. Zhang, C. Li and F. Wang, J. Phys. Chem. Lett., 2022, 13, 1519-1525
- (27) M. A. Uddin, J. K. Mobley, A. A. Masud, T. Liu, R. L. Calabro, D. Y. Kim, C. I. Richards and K. R. Graham, *J. Phys. Chem. C*, 2019, **123**, 18103-18112
- (28) R. K. Gautam, S. Das and A. Samanta, J. Phys. Chem. C, 2021, 125, 24170-24179
- (29) R. K. Gautam, S. Das and A. Samanta, ChemNanoMat, 2022, 8, e202200029
- (30) Z. Wen, Z. Cui, H. He, D. Yang, S. Mei, B. Yang, Z. Xiong, S. Song, R. Bao, W. Zhang, G. Xing, F. Xie and R. Guo, *J. Mater. Chem. C*, 2022, **10**, 9834-9840
- (31) C. Gong, X. Wang, X. Xia, X. Yang, L. Wang and F. Li, Appl. Surf. Sci., 2021, 559, 149986
- (32) Q. Zhong, J. Liu, S. Chen, P. Li, J. Chen, W. Guan, Y. Qiu, Y. Xu, M. Cao and Q. Zhang, *Adv. Optical Mater.*, 2021, **9**, 2001763
- (33) Q. Zhang, M. Jiang, G. Yan, Y. Feng and B. Zhang, J. Mater. Chem. C, 2022, 10, 5849-5855
- (34) C. Xie, Y. Zhao, W. Shi and P. Yang, Langmuir, 2021, 37, 1183-1193
- (35) S. Wang, L. Du, S. Donmez, Y. Xin and H. Mattoussi, *Nanoscale*, 2021, **13**, 16705-16718 (36) D. Yan, Q. Mo, S. Zhao, W. Cai and Z. Zang, *Nanoscale*, 2021, **13**, 9740-9746
- (37) M. Liu, Q. Wan, H. Wang, F. Carulli, X. Sun, W. Zheng, L. Kong, Q. Zhang, C. Zhang, Q. Zhang, S. Brovelli and L. Li, *Nat. Photonics*, 2021, **15**, 379-385
- (38) W. Zheng, Q. Wan, M. Liu, Q. Zhang, C. Zhang, R. Yan, X. Feng, L. Kong and L. Li, J. *Phys. Chem. C*, 2021, **125**, 3110-3118
- (39) Q. Li, D. Shen, C. Luo, Z. Zheng, W. Xia, W. Ma, J. Li, Y. Yang, S. Chen and Y. Chen, *Small*, 2022, **18**, 2107452
- (40) V. G. V. Dutt, S. Akhil and N. Mishra, Nanoscale, 2021, 13, 14442-14449
- (41) D. Liu, K. Weng, S. Lu, F. Li, H. Abudukeremu, L. Zhang, Y. Yang, J. Hou, H. Qiu, Z. Fu, X. Luo, L. Duan, Y. Zhang, H. Zhang and J. Li, *Sci. Adv.*, 2022, **8**, eabm8433
- (42) Q. Zhong, X. Wang, M. Chu, Y. Qiu, D. Yang, T. K. Sham, J. Chen, L. Wang, M. Cao and Q. Zhang, *Small*, 2022, **18**, 2107548
- (43) A. Manoli, P. Papagiorgis, M. Sergides, C. Bernasconi, M. Athanasiou, S. Pozov, S. A. Choulis, M. I. Bodnarchuk, M. V. Kovalenko, A. Othonos and G. Itskos, *ACS Appl. Nano Mater.*, 2021, **4**, 5084-5097
- (44) H. Kim, S. R. Bae, T. H. Lee, H. Lee, H. Kang, S. Park, H. W. Jang and S. Y. Kim, *Adv. Funct. Mater.*, 2021, **31**, 2102770
- (45) C. Tang, X. Shen, S. Yu, Y. Zhong, Z. Wang, J. Hu, M. Lu, Z. Wu, Y. Zhang, W. W. Yu and X. Bai, *Mater. Today Phys.*, 2021, **21**, 100555
- (46) V. G. V. Dutt, S. Akhil, R. Singh, M. Palabathuni and N. Mishra, ACS Appl. Nano Mater., 2022, 5, 5972-5982
- (47) D. Chakraborty, N. Preeyanka, A. Akhuli and M. Sarkar, J. Phys. Chem. C, 2021, 125, 26652-26660
- (48) S. Sun, P. Jia, M. Lu, P. Lu, Y. Gao, Y. Zhong, C. Tang, Y. Zhang, Z. Wu, J. Zhu, Y. Zhang, W. W. Yu and X. Bai, *Adv. Funct. Mater.*, 2022, **32**, 2004286
- (49) X. Min, Q. Xie, Z. Wang, X. Wang and M. Chen, *Mater. Chem. Phys.*, 2022, 276, 125404
 (50) B. Zhang, L. Goldoni, C. Lambruschini, L. Moni, M. Imran, A. Pianetti, V. Pinchetti, S. Brovelli, L. D. Trizio and L. Manna, *Nano Lett.*, 2020, 20, 8847-8853
- (51) B. Zhang, L. Goldoni, J. Zito, Z. Dang, G. Almeida, F. Zaccaria, J. D. Wit, I. Infante, L. D. Trizio and L. Manna, *Chem. Mater.*, 2019. **31**, 9140-9147
- (52) K. A. Huynh, S. R. Bae, T. V. Nguyen, H. H. Do, D. Y. Heo, J. Park, T. W. Lee, Q. V. Le,

S. H. Ahn and S. Y. Kim, ACS Photonics, 2021, 8, 1979-1987

(53) J. M. Park, J. Park, Y. H. Kim, H. Zhou, Y. Lee, S. H. Jo, J. Ma, T. W. Lee and J. Y. Sun, *Nat. Commun.*, 2020, **11**, 4638

(54) Stelmakh, M. Aebli, A. Baumketner and M. V. Kovalenko, *Chem. Mater.*, 2021, **33**, 5962-5973

(55) J. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee and S. Jeong, *Chem. Mater.*, 2017, **29**, 7088-7092

(56) V. K. Ravi, S. Saikia, S. Yadav, V. V. Nawale and A. Nag, ACS Energy Lett., 2020, 5, 1794-1796

(57) W. J. Mir, A. Swarnkar and A. Nag, Nanoscale, 2019, 11, 4278-4286

(58) Q. Zeng, X. Zhang, Q. Bing, Y. Xiong, F. Yang, H. Liu, J. Liu, H. Zhang, W. Zheng, A. L. Rogach and B. Yang, *ACS Energy Lett.*, 2022, **7**, 1963-1790

(59) W. Yin, M. Li, W. Dong, Z. Luo, Y. Li, J. Qian, J. Zhang, W. Zhang, Y. Zhang, S. V. Kershaw, X. Zhang, W. Zheng and A. L. Rogach, *ACS Energy Lett.*, 2021, **6**, 477-484

(60) Y. H. Kim, R. Song, J. Hao, Y. Zhai, L. Yan, T. Moot, A. F. Palmstrom, R. Brunecky, W. You, J. J. Berry, J. L. Blackburn, M. C. Beard, V. Blum and J. M. Luther, *Adv, Funct. Mater.*, 2022, **32**, 2200454

(61) F. Liu, C. Ding, Y. Zhang, T. Kamisaka, Q. Zhao, J. M. Luther, T. Toyoda, S. Hayase, T. Minemoto, K. Yoshino, B. Zhang, S. Dai, J. Jiang, S. Tao and Q. Shen, *Chem. Mater.*, 2019, **31**, 798-807

(62) R. K. Behera, A. Dutta, D. Ghosh, S. Bera, S. Bhattacharyya and N. Pradhan, J. Phys. Chem. Lett., 2019, 10, 7916-7921

(63) R. K. Behera, S. D. Adhikari, S. K. Dutta, A. Dutta and N. Pradhan, J. Phys. Chem. Lett., 2018, 9, 6884-6891

(64) J. Kim, B. Koo, W. H. Kim, J. Choi, C. Choi, S. J. Lim, J. Lee, D. H. Kim, M. J. Ko and Y. Kim, *Nano Energy*, 2019, **66**, 104130

(65) Y. Wang, F. Yuan, Y. Dong, J. Li, A. Johnston, B. Chen, M. I. Saidaminov, C. Zhou, X. Zheng, Y. Hou, K. Bertens, H. Ebe, D. Ma, Z. Deng, S. Yuan, R. Chen, L. K. Sagar, J. Liu, J. Fan, P. Li, X. Li, Y. Gao, M. Fung, Z. Lu, O. M. Bark, L. Liao and E. H. Sargent, *Angew. Chem. Int. Ed.*, 2021, **60**, 16164-16170

(66) L. N. Quan, D. Ma, Y. Zhao, O. Voznyy. H. Yuan, E. Bladt, J. Pan, F. P. G. de Arquer, R. Sabatini, Z. Piontkowski, A. Emwas, P. Todorovic, R. Quintero-Bermudez, G. Walters, J. Z. Fan, M. Liu, H. Tan, M. I. Saidaminov, L. Gao, Y. Li, D. H. Anjum, N. Wei, J. Tang, D. W. McCamant, M. B. J. Roeffaers, S. Bals, J. Hofkens, O. M. Bark, Z. Lu and E. H. Sargent, *Nat. Commun.*, 2020, 11, 170

(67) F. Krieg, S. T. Ochsenbein, S. Yakunin, S. ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. Shih, I. Infante and M. V. Kovalenko, *ACS Energy Lett.*, 2018, **3**, 641-646

(68) X. Shen, Y. Zhang, S. B. Kershaw, T. Li, C. Wang, X. Zhang, W. Wang, D. Li, Y. Wang, M. Lu, L. Zhang, C. Sun, D. Zhao, G. Qin, X. Bai, W. W. Yu and A. L. Rogach, *Nano Lett.*, 2019, **19**, 1552-1559

(69) M. Lu, X. Zhang, X. Bai, H. Wu, X. Shen, Y. Zhang, W. Zhang, W. Zheng, H. Song, W. W. Yu and A. L. Rogach, *ACS Energy Lett.*, 2018, **3**, 1571-1577