Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Influence of counterion on the formation of supramolecular ruthenium, rhodium and iridium complexes containing pyridyl thioamide derivatives and their reactions with azide: Antioxidants and antimicrobial studies

Lincoln Dkhar^a, Hrishikesh Gupta^b, Krishna Mohan Poluri^b, Paige M Gannon^c, Werner

Kaminsky^c, Mohan Rao Kollipara^a*

^aCentre for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022,

India

^bDepartment of Biosciences and Bioengineering, Indian Institute of Technology Roorkee,

Roorkee 247 667, India

^cDepartment of Chemistry, University of Washington, Seattle, WA 98195, USA

E mail: mohanrao59@gmail.com

Contents: -

Figure S1: ¹H NMR spectrum of ligand (L3) in CDCl3 Figure S2: ¹H NMR spectrum of ligand (L5) in CDCl3 Figure S3: ¹H NMR spectrum of complex (1) in CDCl3 Figure S4: ¹H NMR spectrum of complex (2) in CDCl3 Figure S5: ¹H NMR spectrum of complex (3) in CDCl3 Figure S6: ¹H NMR spectrum of complex (4) in CDCl3 Figure S7: ¹H NMR spectrum of complex (5) in CDCl3 Figure S8: ¹H NMR spectrum of complex (6) in CDCl3 Figure S9: ¹H NMR spectrum of complex (7) in CDCl3 Figure S10: ¹H NMR spectrum of complex (8) in CDCl3 Figure S11: ¹H NMR spectrum of complex (9) in CDCl3 Figure S12: ¹H NMR spectrum of complex (10) in DMSO-d6 Figure S13: ¹H NMR spectrum of complex (11) in DMSO-d6 Figure S14: ¹H NMR spectrum of complex (12) in DMSO-d6 Figure S15: ¹H NMR spectrum of complex (13) in DMSO-d6 Figure S16: ¹H NMR spectrum of complex (14) in DMSO-d6 **Figure S17:** ¹H NMR spectrum of complex (15) in DMSO-d6 Figure S18: ¹H NMR spectrum of complex (16) in DMSO-d6 **Figure S19:** ¹H NMR spectrum of complex (17) in DMSO-d6 Figure S20: ¹H NMR spectrum of complex (18) in DMSO-d6 **Figure S21:** ¹H NMR spectrum of complex (**19**) in DMSO-d6 Figure S22: ¹H NMR spectrum of complex (20) in DMSO-d6 Figure S23: ¹H NMR spectrum of complex (21) in DMSO-d6 Figure S24: ¹H NMR spectrum of complex (22) in CDCl3 Figure S25: ¹H NMR spectrum of complex (23) in CDCl3 Figure S26: ¹H NMR spectrum of complex (24) in CDCl3 Figure S27: ¹H NMR spectrum of complex (25) in CDCl3 Figure S28: ¹H NMR spectrum of complex (26) in CDCl3 Figure S29: ¹H NMR spectrum of complex (27) in CDCl3 Figure S30: ¹H NMR spectrum of complex (28) in CDCl3 Figure S31: ¹H NMR spectrum of complex (29) in CDCl3 Figure S32: ¹H NMR spectrum of complex (30) in CDCl3 Figure S33: ¹³C NMR spectrum of complex (6) in CDCl3 Figure S34: ¹³C NMR spectrum of complex (10) in CDCl3 and DMSO-d6 Figure S35: ¹³C NMR spectrum of complex (18) in CDCl3 and DMSO-d6 Figure S36: ESI Mass spectra of complex (1) in Acetonitrile
Figure S37: ESI Mass spectra of complex (5) in Acetonitrile
Figure S38: ESI Mass spectra of complex (9) in Acetonitrile
Figure S39: ESI Mass spectra of complex (10) in Acetonitrile
Figure S40: ESI Mass spectra of complex (11) in Acetonitrile
Figure S41: ESI Mass spectra of complex (12) in Acetonitrile
Figure S42: ESI Mass spectra of complex (13) in Acetonitrile
Figure S43: ESI Mass spectra of complex (14) in Acetonitrile
Figure S43: ESI Mass spectra of complex (15) in Acetonitrile
Figure S45: ESI Mass spectra of complex (16) in Acetonitrile
Figure S46: ESI Mass spectra of complex (17) in Acetonitrile
Figure S47: ESI Mass spectra of complex (18) in Acetonitrile
Figure S48: ESI Mass spectra of complex (19) in Acetonitrile

Figure S50: ESI Mass spectra of complex (21) in Acetonitrile

- Figure S51: IR spectrum of complex (22)
- Figure S52: IR spectrum of complex (23)
- Figure S53: IR spectrum of complex (24)
- Figure S54: IR spectrum of complex (25)
- Figure S55: IR spectrum of complex (26)
- Figure S56: IR spectrum of complex (27)
- Figure S57: IR spectrum of complex (28)
- Figure S58: IR spectrum of complex (29)
- Figure S59: IR spectrum of complex (30)
- Figure S60: UV-Vis absorption spectra of ligands and mononuclear complexes
- Figure S61: UV-Vis absorption spectra of ligands and dinuclear complexes
- Figure S62: Supramolecular structure of complex 13 showing π - π interaction
- Figure S63: Supramolecular structure of complex 14 showing π - π interaction
- Figure S64: Supramolecular structure of complex 17 showing π - π interaction
- Figure S65: Molecular structure of complexes 5, 6, 8 and 9 with a ball and stick representation generated using ORTEP program with 50% thermal ellipsoid probability.
- **Figure S66:** Molecular structure of complexes **26** and **28** with a ball and stick representation generated using ORTEP program with 50% thermal ellipsoid probability.
- Table S1: Crystal structure data and refinement of complexes 1, 2, 3, 4, 5, 6 and 8
- Table S2: Crystal structure data and refinement of complexes 9, 13, 14, 17 and 18
- Table S3: Crystal structure data and refinement of complexes 25, 26, 28 and 30
- Table S4: Selected bond lengths (Å) and bond angles (°) of mononuclear and azido complexes

Table S5: Selected bond lengths (Å) and bond angles (°) of binuclear complexesTable S6: Antibacterial activity (Agar well) of tested compoundsTable S7: DPPH radical scavenging activity of tested compounds

Figure S1: ¹H NMR spectrum of Ligand (L3) in CDCl3

Figure S2: ¹H NMR spectrum of Ligand (L5) in CDCl3

Figure S3: ¹H NMR spectrum of complex (1) in CDCl3

Figure S4: ¹H NMR spectrum of complex (2) in CDCl3

Figure S5: ¹H NMR spectrum of complex (3) in CDCl3

Figure S6: ¹H NMR spectrum of complex (4) in CDCl3

Figure S7: ¹H NMR spectrum of complex (5) in CDCl3

Figure S8: ¹H NMR spectrum of complex (6) in CDCl3

Figure S9: ¹H NMR spectrum of complex (7) in CDCl3

Figure S10: ¹H NMR spectrum of complex (8) in CDCl3

Figure S11: ¹H NMR spectrum of complex (9) in CDCl3

Figure S12: ¹H NMR spectrum of complex (10) in DMSO-d6

Figure S14: ¹H NMR spectrum of complex (12) in DMSO-d6

Figure S15: ¹H NMR spectrum of complex (13) in DMSO-d6

Figure S16: ¹H NMR spectrum of complex (14) in DMSO-d6

Figure S17: ¹H NMR spectrum of complex (15) in DMSO-d6

Figure S18: ¹H NMR spectrum of complex (16) in DMSO-d6

Figure S20: ¹H NMR spectrum of complex (18) in DMSO-d6

Figure S21: ¹H NMR spectrum of complex (19) in DMSO-d6

Figure S22: ¹H NMR spectrum of complex (20) in DMSO-d6

Figure S24: ¹H NMR spectrum of complex (22) in CDCl3

Figure S26: ¹H NMR spectrum of complex (24) in CDCl3

Figure S27: ¹H NMR spectrum of complex (25) in DMSO-d6

Figure S28: ¹H NMR spectrum of complex (26) in DMSO-d6

Figure S30: ¹H NMR spectrum of complex (28) in DMSO-d6

Figure S31: ¹H NMR spectrum of complex (29) in DMSO-d6

Figure S32: ¹H NMR spectrum of complex (30) in DMSO-d6

-120 80 180 260 240 220 200 160 140 120 100 80 60 Chemical Shift (ppm) 40 20 0 -20 -40 -60 -100 -80 Figure S33: ¹³C NMR spectrum of complex (6) in CDCl3 39.54 -78.16

Figure S34: ¹³C NMR spectrum of complex (10) in CDCl3 and DMSO-d6

Figure S35: ¹³C NMR spectrum of complex (18) in CDCl3 and DMSO-d6

Figure S36: ESI Mass spectrum of complex (1) in Acetonitrile

Figure S37: ESI Mass spectrum of complex (5) in Acetonitrile

Figure S38: ESI Mass spectrum of complex (9) in Acetonitrile

Figure S39: ESI Mass spectrum of complex (10) in Acetonitrile

Figure S40: ESI Mass spectrum of complex (11) in Acetonitrile

Figure S41: ESI Mass spectrum of complex (12) in Acetonitrile

Figure S42: ESI Mass spectrum of complex (13) in Acetonitrile

Figure S43: ESI Mass spectrum of complex (14) in Acetonitrile

Figure S44: ESI Mass spectrum of complex (15) in Acetonitrile

Figure S45: ESI Mass spectrum of complex (16) in Acetonitrile

Figure S46: ESI Mass spectrum of complex (17) in Acetonitrile

Figure S47: ESI Mass spectrum of complex (18) in Acetonitrile

Figure S48: ESI Mass spectrum of complex (19) in Acetonitrile

Figure S49: ESI Mass spectrum of complex (20) in Acetonitrile

Figure S50: ESI Mass spectrum of complex (21) in Acetonitrile

Figure S51: IR spectrum of complex (22)

Figure S52: IR spectrum of complex (23)

Figure S53: IR spectrum of complex (24)

Figure S54: IR spectrum of complex (25)

Figure S55: IR spectrum of complex (26)

Figure S56: IR spectrum of complex (27)

Figure S57: IR spectrum of complex (28)

Figure S58: IR spectrum of complex (29)

Figure S59: IR spectrum of complex (30)

Figure S60: UV-Vis absorption spectra of ligands and mononuclear complexes

Figure S61: UV-Vis absorption spectra of ligands and dinuclear complexes

Figure S62: Supramolecular structure of complex 13 showing π - π interaction

Figure S63: Supramolecular structure of complex 14 showing π - π interaction

Figure S64: Supramolecular structure of complex **17** showing π - π interaction

2 Figure S65: Molecular structure of complexes 5, 6, 8 and 9 with a ball and stick representation generated using ORTEP program with

50% thermal ellipsoid probability.

4

5 Figure S66: Molecular structure of complexes 26 and 28 with a ball and stick representation generated using ORTEP program with

6 50% thermal ellipsoid probability.

Complexes	[1]	[2]	[3]	[4]	[5]	[6]	[8]
Empirical formula	C ₂₁ H ₂₈ Cl ₂ N ₂ RuS	C ₂₀ H ₂₆ Cl ₂ N ₂ ORuS	C20H28Cl2ON2RuS2	C ₂₁ H ₂₉ Cl ₂ N ₂ RhS	C21H29Cl4ON2RhS	C21H29Cl4N2RhS2	C ₂₁ H ₂₉ Cl ₄ ON ₂ IrS
Formula weight	512.48	514.46	548.53	515.33	602.23	648.29	691.52
Temperature (K)	100(2) K	297.04(14)	100(2)	100(2)	291(2)	100(2)	294(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic	Orthorhombic	monoclinic	Orthorhombic
Space group	$P2_{1}/a$	$P2_{1}/c$	$P2_{1}/n$	$P2_{1/c}$	Pnma	$P2_{1}/c$	Pnma
a (Å)/α (°)	12.5100(2)/90	13.3700(7)/90	6.3809(3)/90	8.6547(6)/90	8.8528(7)/90	11.1857(12)/90	8.6022(9)/90
b (Å)/β (°)	14.7339(3)/108.9790(10)	14.7014(7)/114.256(6)	15.1058(6)/91.467(2)	21.2189(15)/99.337(4)	11.3841(16)/90	26.677(3)/90.582(6)	11.3914(10)/90
c (Å)/γ (°)	12.8760(3)/90	12.4251(6)/90	23.3279(10)/90	12.3191(10)/90	26.096(2)/90	8.491(8)/90	26.1587(18)/90
Volume (Å ³)	2244.30(8)	2226.6(2)	2247.81(17)	2232.3(3)	2549.8(5)	2533.7(4)	2563.3(4)
Z	4	4	4	4	4	4	4
Density (calc) (g/cm ⁻³)	1.517	1.535	1.621	1.533	1.569	1.621	1.792
Absorption coefficient	1.038	1.050	1.135	1.107	1.187	1.273	5.723
F(000)	1048	1048	1120	1056	1224	1256	1352
Crystal size (mm ³)	0.55 x 0.30 x 0.15	0.21 x 0.15 x0.12	0.40 x 0.20 x 0.14	0.18 x 0.13 x 0.11	0.15 x 0.13 x 0.12	0.27 x 0.20 x 0.15	0.25 x 0.23 x 0.21
Theta range for data	3.090 to 28.277°	6.472 to 52.744°	1.606 to 28.473	1.919 to 28.441°.	3.358 to 28.966°	1.527 to 26.611°	3.352 to 25.023°
collection							
Index ranges	-16<=h<=16, -	-16<=h<=15, -	-8<=h<=8, -	-11<=h<=11, -	-11<=h<=6, -	-13<=h<=13, -	-10<=h<=9, -
	19<=k<=18, -	18<=k<=14, -	20<=k<=20, -	28<=k<=28, -	10<=k<=15, -	33<=k<=33, -	13<=k<=6, -
	17<=l<=17	15<=l<=14	31<=l<=31	16<=l<=16	32<=l<=23	10<=l<=10	29<=l<=31
Reflections collected	9829	8636	11032	11027	7038	77503	5319
Independent reflections	$5512 [R_{int} = 0.0478]$	$4516 [R_{int} = 0.0230]$	5644 [$R_{int} = 0.0113$]	$5611 [R_{int} = 0.0239]$	$3097 [R_{int} = 0.0453]$	$5216 [R_{int} = 0.0693]$	$2303 [R_{int} = 0.0566]$
Completeness to theta =	99.7 %	99.09 %	100.0 %	100.0 %	99.4 %	100.0 %	96.5 %
25.00°	a · · · · .	a · · · 16	a · · · · .	a · · · · · ·	a · · · ·	a · · · ·	a · · · · · ·
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical	Semi-empirical	Semi-empirical from
	equivalents	equivalents	equivalents	equivalents	from equivalents	from equivalents	equivalents
Refinement method	Full-matrix least-squares	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
	on F^2	squares on F ²	squares on F2	squares on F ²	squares on F2	squares on F2	squares on F2
Data/restraints/parameters	5512/6/247	4516/0/247	5644/0/264	5611/12/286	3097/96/198	5216/116/306	2303/108/205
Goodness-of-fit on F ₂	0.999	1.087	1.072	1.034	1.076	1.135	1.086
Final R indices	R1 = 0.0429, WR2 =	R1 = 0.0318, $wR2 =$	R1 = 0.0210, wR2 =	R1 = 0.0369, wR2 =	R1 = 0.0487, wR2	R1 = 0.0715, wR2	R1 = 0.0511, wR2 =
[I>2sigma(I)]	0.0878	0.0688	0.0487	0.0799	= 0.0951	= 0.2014	0.1140
R indices (all data)	R1 = 0.0646, wR2 =	R1 = 0.0392, wR2 =	R1 = 0.0229, wR2 =	R1 = 0.0411, $wR2 =$	R1 = 0.0706, wR2	R1 = 0.0766, wR2	R1 = 0.0570, wR2 =
	0.0955	0.0720	0.0496	0.0834	= 0.1068	= 0.2094	0.1175
Largest diff. peak and	1.408 and -1.452	0.42 and -0.57	0.938 and -0.585	2.102 and -1.644	0.495 and -0.707	2.347 and -2.747	2.806 and -2.865
hole (e.A ⁻³)							
CCDC No.	2154928	2154929	2154930	2154931	2154932	2154934	2154933
9 Structures were refined on F_0^2 : $wR_2 = [\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma(F_0^2) + (aP)^2 + bP]$ and $P = [\max(F_0^2, 0) + 2F_c^2]/3$							

Table S1: Crystal structure data and refinement of complexes 1, 2, 3, 4, 5, 6 and 8

Complexes	[9]	[13]	[14]	[17]	[18]
Empirical formula	$C_{21}H_{29}Cl_4N_2IrS_2$	$C_{40}H_{52}Cl_2N_4S_2O_2Ru_2P_2F_{12}$	$C_{42}H_{58}Cl_2N_4S_2Rh_2P_2F_{12}$	$C_{43}H_{60}Cl_2N_4S_2O_3Rh_2P_2F_{12}$	C42H58Cl2N4S2It
Formula weight	707.58	1247.95	1249.70	1311.73	1428.28
Temperature (K)	100(2)	100(2) K	100(2)	100(2) K	100(2)
Wavelength (Å)	0.71073	0.71073 Å	0.71073	0.71073 Å	0.71073
Crystal system	monoclinic	Triclinic	triclinic	Monoclinic	Monoclinic
Space group	$P2_{1/c}$	P -1	P-1	C 2/c	P 21/c
a (Å)/α (°)	11.1464(10)/90	13.6056(7)/82.735(3)	7.959(2)/97.420(19)	22.0955(16)/90	8.2773(2)/90
b (Å)/β (°)	26.663(2)/90.400(5)	14.0473(8)/64.600(3)	12.268(3)/99.95(2)	16.5036(16)/101.726(5)	12.9050(4)/91.1
c (Å)/γ (°)	8.4706(8)/90	14.1811(8)/71.903(3)	13.193(4)/102.764(16)	14.8446(13)/90	22.8179(10)/90
Volume (Å ³)	2517.3(4)	2327.1(2)	1218.6(6)	5300.2(8)	2436.92(14)
Z	4	2	1	4	2
Density (calc) (g/cm ⁻³)	1.867	1.781	1.703	1.644	1.946
Absorption coefficient	5.907	1.012	1.021	0.947	5.799
F(000)	1384	1256	632	2656	1392
Crystal size (mm ³)	0.15 x 0.13 x 0.10	0.60 x 0.40 x 0.20	0.09 x 0.08 x 0.08	0.60 x 0.45 x 0.40	0.08 x 0.07 x 0.0
Theta range for data collection	1.527 to 28.487°	1.525 to 28.408°	1.591 to 25.393°	1.552 to 28.464°	1.785 to 28.262
Index ranges	-14<=h<=14, -	-18<=h<=18, -	-9<=h<=9, -	-29<=h<=29, -	-10<=h<=10, -
C	35<=k<=35, -	18<=k<=18, -18<=l<=18	14<=k<=14, -	22<=k<=22, -19<=l<=19	14<=k<=15, -
	11<=l<=11		15<=l<=15		30<=l<=29
Reflections collected	79425	23141	4480	25863	10200
Independent reflections	$6336 [R_{int} = 0.0525]$	11624 [R(int) = 0.0290]	4480 [R(int) = 0.1368]	6652 [R(int) = 0.0120]	5493 [R(int) = 0]
Completeness to theta = 25.00°	100.0 %	100.0 %	100.0 %	99.8 %	97.7 %
Absorption correction	Semi-empirical	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical
1	from equivalents	equivalents	equivalents	equivalents	equivalents
Refinement method	Full-matrix least-	Full-matrix least-squares	Full-matrix least-	Full-matrix least-squares	Full-matrix leas
	squares on E ²	$on E^2$	squares on E^2	on F2	squares on E ²
Data/restraints/parameters	6336/40/284	11624/63/647	4480/54/304	6652/171/399	5493/0/303
Goodness-of-fit on E2	1 156	1 043	0.931	1 059	0.911
Final R indices	$R_1 = 0.0425 \text{ w}R_2$	$R_1 = 0.0432 \text{ wR}_2 =$	$R_1 = 0.0688 \text{ w}R_2 =$	$R_1 = 0.0190 \text{ w}R_2 =$	$P_1 = 0.0418 \text{ m}$
[]\2sigma(I)]	K1 = 0.0423, WK2 = 0.0971	R1 = 0.0432, WR2 = 0.0987	R1 = 0.00000, WR2 = 0.1377	R1 = 0.0190, WR2 = 0.0440	$R_1 = 0.0410, w_1$
P indices (all data)	= 0.0971 P1 = 0.0484 mP2	$P_1 = 0.0506 \text{ wP}_2 =$	$P_1 = 0.1657 \text{ wP}_2 = 0.1657 \text{ wP}_2$	$P_1 = 0.0203 \text{ wP}_2 =$	$P_1 = 0.0074 \text{ m}$
ix multes (all uata)	$K_1 = 0.0404, WK_2$ = 0.0008	$K_1 = 0.0390, WK_2 = 0.1052$	$\Lambda 1 = 0.1037, W \Lambda 2 = 0.1850$	$R_1 = 0.0203, WR2 = 0.04/8$	0.0974, WI
Largest diff neak and	- 0.0990 3 387 and -2 682	0.1032 1 129 and -1 013	0.1039 1 140 and -1 180	0.0440 0.562 and -0.473	0.0000 2.704 and -1.26
hole $(\alpha \ ^{3})$	5.507 and -2.002	1.127 and -1.015	1.1+0 and -1.100	0.502 and -0.475	2.194 and -1.20
CCDC No	2154025	2154026	2154027	2154028	2154020
	2154755	2154750	2137737	2157750	2134737

Table S2: Crystal structure data and refinement of complexes **9**, **13**, **14**, **17** and **18**

13 Structures were refined on F_0^2 : $wR_2 = [\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma(F_0^2) + (aP)^2 + bP]$ and $P = [\max(F_0^2, 0) + 2F_c^2]/3$

Complexes	[25]	[26]	[28]	[30]
Empirical formula	C ₂₂ H ₃₁ N ₈ RhS	C21H29ON8RhS	C22H31N8IrS	$C_{20}H_{27}N_8IrS_2$
Formula weight	613.42	615.39	702.71	635.81
Temperature (K)	100(2)	100(2)	100(2)	100(2)
Wavelength (Å)	0.71073	0.71073	0.71073	0.71073
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	$P2_{I}/c$	$P2_{1/c}$	$P2_{1}/c$	$P2_1/a$
a (Å)/α (°)	11.2161(9)/90	11.1527(8)/90	11.1957(5)/90	9.0819(4)/90
b (Å)/β (°)	26.7043(18)/91.737(4)	26.4244(17)/91.855(3)	26.6373(14)/91.619(3)	26.5743(13)/90.582(3)
c (Å)/γ (°)	8.8228(7)/90	8.7878(6)/90	8.8859(10)/90	11.1669(6)/90
Volume (Å ³)	2641.4(3)	2588.4(3)	2648.9(3)	2694.9(2)
Z	4	4	4	4
Density (calc) (g/cm ⁻³)	1.543	1.579	1.762	1.567
Absorption coefficient	0.955	0.978	5.348	5.131
F(000)	1256	1256	1384	1248
Crystal size (mm ³)	0.15 x 0.14 x 0.12	0.30 x 0.10 x 0.05	0.15 x 0.03 x 0.02	0.22 x 0.16 x 0.10
Theta range for data	1.525 to 28.355°	1.541 to 28.536	1.529 to 25.026°.	0.766 to 28.266°
collection				
Index ranges	-14<=h<=14, -	-14<=h<=14, -	-13<=h<=13, -	-12<=h<=11, -
	35<=k<=35, -	35<=k<=35, -	31<=k<=31, -	34<=k<=35, -
	11<=l<=11	11<=l<=11	10<=l<=10	14<=l<=14
Reflections collected	13112	83778	9061	10095
Independent reflections	$6545 [R_{int} = 0.0161]$	$6540 [R_{int} = 0.1174]$	$4586 [R_{int} = 0.0324]$	$6283 [R_{int} = 0.0658]$
Completeness to theta =	100.0 %	99.9 %	97.9 %	99.3 %
25.00°				
Absorption correction	Semi-empirical from	Semi-empirical from	Semi-empirical from	Semi-empirical from
	equivalents	equivalents	equivalents	equivalents
Refinement method	Full-matrix least-	Full-matrix least-	Full-matrix least-	Full-matrix least-
	squares on F ²	squares on F2	squares on F ²	squares on F2
Data/restraints/parameters	6545/0/313	6540/0/312	4586/9/312	6283/324/310
$Goodness-of-fit on F_2$	1.098	1.005	1.012	1.287
Final R indices	R1 = 0.0347, wR2 =	R1 = 0.0346, wR2 =	R1 = 0.0266, wR2 =	R1 = 0.0570, wR2 =
[I > 2 sigma(I)]	0.0928	0.0787	0.0545	0.1361
R indices (all data)	R1 = 0.0393, wR2 =	R1 = 0.0547, wR2 =	R1 = 0.0448, wR2 =	R1 = 0.0809, wR2 =
it malees (un duiu)	0.0959	0.0845	0.0604	0 1446
Largest diff. peak and	2.425 and -0.811	1.177 and -0.931	2.432 and -0.867	5.056 and -3.570
hole (e, $Å^{-3}$)	2.125 and 0.011	1.177 unu 0.751	2.102 and 0.007	2.000 und 0.070
			2154042	

 Table S3: Crystal structure data and refinement of complexes 25, 26, 28 and 30

16 Structures were refined on F_0^2 : $wR_2 = [\Sigma[w(F_0^2 - F_c^2)^2] / \Sigma w(F_0^2)^2]^{1/2}$, where $w^{-1} = [\Sigma(F_0^2) + (aP)^2 + bP]$ and $P = [\max(F_0^2, 0) + 2F_c^2]/3$

17

Complexes	1	2	3	4	5	6	8	9
M(1)-CNT	1.661	1.653	1.660	1.770	1.781	1.772	1.799	1.792
M(1)-N(1)	2.113(3)	2.1287(19)	2.1067(12)	2.115(2)	2.124(4)	2.128(6)	2.128(11)	2.111(6)
M(1)-Cl(1)	2.4053(9)	2.4045(7)	2.4193(4)	2.3963(8)	2.4107(10)	2.413(2)	2.413(3)	2.406(4)
M(1)-Cl(2)	2.4085(9)	2.4107(7)	2.4284(4)	2.4063(8)	2.4107(10)	2.422(2)	2.413(3)	2.412(3)
N(1)-M(1)-Cl(1)	86.25(8)	86.04(6)	86.29(3)	88.20(6)	88.64(8)	89.33(18)	89.5(8)	87.4(4)
N(1)-M(1)-Cl(2)	86.88(8)	87.17(6)	87.25(4)	86.53(6)	88.64(8)	87.66(18)	84.3(8)	84.88(19)
Cl(1)-M(1)-Cl(2)	87.35(3)	87.58(3)	86.177(14)	93.03(3)	89.44(6)	88.92(7)	87.37(14)	86.8(2)
Complexes	25	26	28	30				<u> </u>
M(1)-CNT	1.769	1.768	1.776	1.786	—			
M(1)-N(1)	2.119(2)	2.116(2)	2.103(4)	2.115(7)	_			
M(1)-N(3)	2.122(2)	2.123(2)	2.131(4)	2.09(2)	_			
M(1)-N(6)	2.130(2)	2.129(2)	2.115(4)	2.165(16)	_			
N(1)-M(1)-N(3)	83.92(8)	83.49(8)	82.14(15)	81.4(5)				
N(1)-M(1)-N(6)	83.73(8)	83.41(8)	82.31(15)	79.1(12)				
N(3)-M(1)-N(6)	86.83(10)	86.44(9)	84.50(16)	81.6(2)	_			

Table S4: Selected bond lengths (Å) and bond angles (°) of mononuclear and azido complexes.

19 *CNT* represents the centroid of the *p*-cymene/Cp* ring and (M = Ru, Rh and Ir)

20	Table S5: Selected b	ond lengths (Å) a	nd bond angles (°)	of binuclear complexes.
----	----------------------	-------------------	--------------------	-------------------------

Complexes	13	14	17	18
M(1)-CNT	1.663	1.776	1.772	1.788
M(2)-CNT	1.692			
M(1)-Cl(1)	2.4111(8)	2.448(3)	2.3936(3)	2.4062(16)
M(2)-Cl(2)	2.4083(8)			
M(1)-N(1)	2.116(3)	2.117(8)	2.1243(11)	2.131(5)
M(2)-N(3)	2.121(3)			
M(1)-S(1)		2.451(3)	2.4237(4)	2.4335(17)
M(1)-S(2)	2.4316(8)			
M(2)-S(1)	2.4190(8)			
Cl(1)-M(1)-N(1)	88.59(8)	88.8(2)	90.34(3)	86.75(15)
N(1)-M(1)-S(1)		92.1(2)	90.39(3)	91.57(15)
Cl(1)-M(1)-S(1)		94.00(11)	92.968(12)	92.11(6)
N(1)-M(1)-S(2)	87.42(8)			
Cl(1)-M(1)-S(2)	92.31(3)			
Cl(2)-M(2)-S(1)	87.64(3)			
N(3)-M(2)-S(1)	89.66(7)			
Cl(2)-M(2)-N(3)	88.06(7)			

CNT represents the centroid of the *p*-cymene/Cp* ring and (M = Ru, Rh and Ir)

S.	Compound	Zone of inhibition (Diameter in mm) at conc. 200 μg					
No.	Names	E. coli	P. aeruginosa	S. aureus	B. thuringiensis		
1	Complex 1	-	-	17±1	-		
2	Complex 2	-	-	18±1	16±1		
3	Complex 3	-	-	-	16±1		
4	Complex 4	-	-	-	15±1		
5	Complex 6	-	-	-	18±1		
6	Complex 7	-	-	20±1	16±1		
7	Complex 8	-	18±1	18±1	21±1		
8	Complex 9	-	18±1	18±1	17±1		
9	Complex 14	-	-	21±1	19±1		
10	Complex 15	-	-	22±1	20±1		
11	Complex 16	-	-	21±1	19±1		
12	Complex 17	-	-	22±1	22±1		
13	Complex 18	-	-	21±1	20±1		
14	Complex 19	-	-	22±1	22±1		
15	Complex 20	-	-	22±1	20±1		
16	Complex 21	-	-	22±1	22±1		
17	Kanamycin (+ve control)	22±1	21±1	23±1	22±1		

Table S6: Antibacterial activity (Agar well) of tested compounds.

E. coli = Escherichia coli; *P.* aeruginosa = Pseudomonas aeruginosa; *S.* aureus = *Staphylococcus aureus*; *B. thuringiensis* = Bacillus thuringiensis, NI: No Inhibition and Data
are means (n = 3) ± Standard deviation of three replicates.

Compound	% DRSA	Standard Error
AA	100	0
Ligand 1	4.5	±0.7
Ligand 2	6.1	±1.1
Ligand 4	9.25	±0.04
Ligand 5	11.60	±0.22
Complex 2	6.5	±0.1
Complex 3	2.5	±0.2
Complex 7	16.9	±0.1
Complex 8	35.6	±1.1
Complex 9	22.1	±3.3
Complex 10	17.59	±0.16
Complex 11	24.47	±0.14
Complex 12	15.46	±0.18
Complex 13	16.04	±0.32
Complex 15	5.51	±0.09
Complex 16	1.39	±0.17
Complex 17	9.51	±0.16
Complex 18	22.88	± 0.08
Complex 19	19.68	±0.23
Complex 20	17.46	±0.17
Complex 21	19.48	±0.44

Table S7: DPPH radical scavenging activity of tested compounds.

28 *AA: Ascorbic acid

29