Carboxylation of terminal alkynes with CO₂

catalyzed by imidazolium-bridged bis(phenolato)

rare-earth metal complexes

Kai Shi, Chengrong Lu*, Bei Zhao*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Dushu Lake Campus, Soochow University, Suzhou 215123 (P. R. China)

Contents

Experimental section	2	
Table S1. Screening of solvents and bases in carboxylation of	1	
phenylacetylene with CO ₂	4	
Table S2. Optimization of three-component reaction of phenylacetylene,	4	
<i>n</i> -butyl bromide and CO ₂		
Solid state structures of complexes 1-4	5	
Crystallographic data for complexes 1-4	7	
Characterization data of ligand and complexes 1-5		
NMR spectra of the complexes 1 and 5		
Characterization data of the propiolic acids	13	
Characterization data of the esters of propiolic acids	16	
NMR spectra of the propiolic acids	18	
NMR spectra of the esters of propiolic acids	43	
References	50	

Experimental section

General procedures

All manipulations involving air- and moisture-sensitive components were performed in a dry argon or carbon dioxide atmosphere using standard Schlenk techniques unless otherwise stated. All solvents were purchased and dried directly without purification prior to use. THF, toluene, and n-hexane were degassed and distilled from sodium benzophenone ketyl before use, while DMSO was dried using CaH₂ and CHCl₃ was treated by P₄O₁₀. Various liquid bases were also treated with dehydration and distilled before use. Commercial available terminal alkynes were used directly. The proligand H₂LCl and rare-earth metal precursors RE[N(SiMe₃)₂]₃ were prepared according to the published method¹⁻³. All NMR spectra were obtained on Bruker Ascend 400 spectrometer (400 MHz for ¹H and 101 MHz for ¹³C) or Bruker Kalsruhe 300 spectrometer (300 MHz for ¹H and 75 MHz for ¹³C). X-ray crystallographic data were obtained using a Bruker D8 QUEST CCD X-ray diffractometer or Rigaku Mercury CCD instrument. Data reduction was accomplished by the Bruker APEX program and refined by OLEX2 software. IR spectra were recorded with a VERTEX 70+HYPERION 2000 instrument. High-resolution mass spectra were obtained by Bruker ESI-TOF or Waters EI-GCT-TOF MS.

Typical procedure for the synthesis of imidazolium-bridged bis(phenolato) rare-earth metal complexes L₃RE₂Cl₃

To a Schlenk flask containing a THF solution of the ligand precursor H_2LCl , a THF solution of $RE[N(SiMe_3)_2]_3$ was added and the reaction was stirred for 12 h at room temperature. After removal of the THF under reduced pressure, the $HN(SiMe_3)_2$ was eliminated by washing with hexane three times. Crystals were obtained by recrystallisation in a mixture of THF-toluene or THF-hexane at room temperature.

General procedure for the reactions of terminal alkynes with CO₂ catalyzed by complex 1

In a 5 mL Schlenk vial equipped with a magnetic stirrer, complex 1 (8.9 mg, 0.005 mmol) and Cs_2CO_3 (325 mg, 1 mmol) were added, followed by the injection of

anhydrous DMSO (1 mL) using a syringe. After stirring for about 10 min, the argon gas in the flask was discharged three times with CO_2 immediately after the addition of terminal alkyne. Thereafter, CO_2 was introduced at ambient pressure using a balloon. The reaction mixture was stirred at 40 °C for 20 h. After cooling to room temperature, the reaction system was quenched by adding 10 mL of water. It was then acidified with the aqueous solution of hydrochloric acid (6 N, 10 mL) and extracted with ethyl ether (3 x 15 mL). The combined organic layer was washed with brine, dried with anhydrous sodium sulfate and filtered, and the crude acid was obtained after the removal of organic solvent under reduced pressure. The pure target product was obtained by flash column chromatography.

General procedure for the one-pot three-component reaction of terminal alkynes, CO₂, and alkyl halide catalyzed by complex 1

In a 5 mL Schlenk vial equipped with a magnetic stirrer, complex **1** (8.9 mg, 0.005 mmol), Cs_2CO_3 (325 mg, 1 mmol) and DMSO (1 mL) were added. After stirring for about 10 min, the terminal alkyne (0.5 mmol) and alkyl bromide (0.6 mmol) were added orderly with syringes, followed by the argon gas in the flask discharging with CO_2 three times. Thereafter, CO_2 was introduced at ambient pressure using a balloon. The reaction mixture was stirred at 50 °C for 30 h. After cooling to room temperature, the reaction system was quenched by adding 10 mL of water. It was then acidified with the dilute aqueous solution of hydrochloric acid (2 N, 10 mL) and extracted with ethyl ether (3 x 15 mL). The combined organic layer was washed with brine, dried with anhydrous sodium sulfate and filtered. The crude esters were obtained by concentration in vacuum. The pure esters were finally obtained by flash column chromatography (petroleum ether as eluent).

Ph-=== +	$\begin{array}{r} 1 \text{ mol}\% \text{ of } 2 \text{ equiv. b} \\ \text{CO}_2 & \text{ solvent, } 40^{\circ} \\ \text{(balloon)} \end{array}$	cat.1 base HCl → Ph ⁻ C, 20 h	—О ОН 6а
Entry	Base	Solvent	Yield ^b /%
1	Cs ₂ CO ₃	DMF	20
2	Cs_2CO_3	CHCl ₃	12
3	Cs_2CO_3	THF	14
4	Cs_2CO_3	Tol	-
5	Cs_2CO_3	DMSO	97
6	Na ₂ CO ₃	DMSO	-
7	K_2CO_3	DMSO	-
8	DBU	DMSO	30
9	TEA	DMSO	15

Table S1. Screening of solvents and bases in carboxylation of phenylacetylene with CO_2^a

Table S2. Optimization of three-component reaction of phenylacetylene, n-butylbromide and CO_2^a

(balloon)	Br (1.2 equiv.)	1 mol% cat.1 2 equiv. Cs ₂ CO ₃ DMSO, T, t	0 7a
Entry	t/h	T/°C	Yield ^b /%
1	20	40	60
2	20	50	72
3	20	60	75
4	20	80	76
5	24	50	80
6	30	50	96
7	36	50	99

^{*a*}Reaction conditions: phenylacetylene (0.5 mmol), base (1.0 mmol), *n*-butyl bromide (0.6 mmol), cat.**1** (0.005 mmol), CO₂ (1 atm), DMSO (1 mL). ^{*b*} Isolated yields.

Solid state structures of complexes 1-4

Figure S1. ORTEP view of complex **1**•**4**THF with ellipsoids at the 30% probability level. Hydrogen atoms, except the H1, H2, H3 atoms are omitted for clarity.

Figure S2. ORTEP view of complex 2.6THF with ellipsoids at the 30% probability level.

Hydrogen atoms, except the H1, H2, H3 atoms are omitted for clarity.

Figure S3. ORTEP view of complex **3**·**6**THF with ellipsoids at the 30% probability level. Hydrogen atoms, except the H1, H2, H3 atoms are omitted for clarity.

Figure S4. ORTEP view of complex **4·5.5**THF with ellipsoids at the 30% probability level. Hydrogen atoms, except the H1, H2, H3A atoms are omitted for clarity.

1·4THF 2.6THF 3.6THF 4.5.5THF Empirical C115Cl3H173N6O10Y2 C123Cl3H189N6O12Yb2 $C_{123}Cl_{3}H_{189}N_{6}O_{12}Sm_{2}$ C121Cl3H185N6Nd2O11.5 formula Formula weight 2083.75 2396.22 2350.84 2302.57 Temperature/K 119.96 120.05 119.99 120.0 Crystal system monoclinic triclinic monoclinic monoclinic Space group $P2_1/c$ P-1 $P2_1/c$ $P2_1/n$ a/Å 14.596(9) 14.754(1)17.000(2)14.662(1)b/Å 24.365(1)16.988(1)24.481(1)21.841(2)c/Å 31.832(3) 25.199(2) 31.882(1)32.617(4) $\alpha/^{\circ}$ 90 98.378(2) 90 90 β/° 96.598(2) 97.840(2) 96.634(1) 96.453(4) $\gamma/^{\circ}$ 90 100.313(2)90 90 Volume/Å³ 11366.9(9) 11246.3(8) 6061.1(6) 12034(2)Z 4 2 4 4 $\rho_{calc} g/cm^3$ 1.313 1.231 1.374 1.271 μ/mm^{-1} 1.156 1.659 1.157 0.978 F(000) 4456.0 2512.0 4960.0 4864.0 Crystal size/mm³ $0.3\times0.2\times0.2$ $0.3\times0.2\times0.1$ $0.2\times0.15\times0.15$ $0.3 \times 0.2 \times 0.2$ Radiation MoK α ($\lambda = 0.71073$) MoKa ($\lambda = 0.71073$) MoK α ($\lambda = 0.71073$) MoKa ($\lambda = 0.71073$) 2θ range for data 3.392 to 55.034 3.738 to 55.104 3.942 to 55.006 3.398 to 55.026 collection/° $-18 \le h \le 18$, $-19 \le h \le 19$, $-19 \le h \le 19$, $-22 \le h \le 22$, Index ranges $-31 \le k \le 31$, $-22 \le k \le 22$, $-31 \le k \le 31$, $-28 \le k \le 28$, $-41 \le 1 \le 41$ $-32 \le l \le 32$ $-41 \le l \le 41$ $-42 \le l \le 42$ Reflections 234999 125271 303288 267931 collected 25827 27523 26067 27573 Independent $[R_{int} = 0.1504,$ $[R_{int} = 0.1224]$ $[R_{int} = 0.0988,$ $[R_{int} = 0.0982,$ reflections $R_{sigma} = 0.0931$] $R_{sigma} = 0.1092$] $R_{sigma} = 0.0434$] $R_{sigma} = 0.0490$] Data/restraints/pa 25827/0/1081 27523/3510/1081 26067/0/1081 27573/2343/1081 rameters Goodness-of-fit 1.032 1.038 1.037 1.026 on F^2 Final R indexes $R_1 = 0.0552$, $R_1 = 0.0578$, $R_1 = 0.0337$, $R_1 = 0.0389$, $[I \ge 2\sigma(I)]$ $wR_2 = 0.1075$ $wR_2 = 0.1433$ $wR_2 = 0.0838$ $wR_2 = 0.0987$ Final R indexes $R_1 = 0.1007$, $R_1 = 0.0954$, $R_1 = 0.0516$, $R_1 = 0.0548$, [all data] $wR_2 = 0.1230$ $wR_2 = 0.1606$ $wR_2 = 0.0944$ $wR_2 = 0.1095$ Largest diff. 0.53/-0.64 2.10/-1.65 1.24/-0.94 1.32/-1.30 peak/hole / e Å⁻³

Crystallographic data for complexes 1-4 Table S3. Crystallographic data and structure refinement details for complexes 1-4.

1·4THF			
Y(1)-O(1)	2.132(2)	Y(2)-Cl(2)	2.806(8)
Y(1)-O(2)	2.132(2)	Y(2)-Cl(3)	2.781(5)
Y(1)-O(3)	2.139(2)	Cl(3)-Y(1)-Cl(2)	76.85(2)
Y(1)-Cl(1)	2.876(1)	O(2)-Y(1)-Cl(2)	82.90(6)
Y(1)-Cl(2)	2.795(2)	O(2)-Y(1)-O(1)	102.08(8)
Y(1)-Cl(3)	2.785(2)	O(1)-Y(1)-Cl(3)	96.28(6)
Y(2)-O(4)	2.111(2)	O(3)-Y(1)-Cl(1)	156.85(6)
Y(2)-O(5)	2.142(5)	Y(1)-Cl(1)-Y(2)	89.23(2)
Y(2)-O(6)	2.161(6)	Y(1)-Cl(2)-Y(2)	90.98(2)
Y(2)-Cl(1)	2.811(6)	Y(1)-Cl(3)-Y(2)	91.72(2)

Table S4 Selected bond lengths (Å) and bond angles ($^{\rm o}$) for complex 1·4THF.

Table S5 Selected bond lengths (Å) and bond angles ($^{\circ}$) for complex 2·6THF.

2 .6THF			
Yb(1)-O(1)	2.125(4)	Yb(2)-Cl(2)	2.752(1)
Yb(1)-O(2)	2.097(4)	Yb(2)-Cl(3)	2.730(2)
Yb(1)-O(3)	2.110(4)	Cl(2)-Yb(1)-Cl(3)	75.06(4)
Yb(1)-Cl(1)	2.760(2)	O(2)-Yb(1)-Cl(1)	98.60(12)
Yb(1)-Cl(2)	2.738(1)	O(2)-Yb(1)-O(1)	101.90(16)
Yb(1)-Cl(3)	2.796(2)	O(1)-Yb(1)-Cl(3)	83.94(12)
Yb(2)-O(4)	2.093(4)	O(3)-Yb(1)-Cl(2)	157.42(12)
Yb(2)-O(5)	2.103(4)	Yb(1)-Cl(1)-Yb(2)	89.71(4)
Yb(2)-O(6)	2.109(4)	Yb(1)-Cl(2)-Yb(2)	91.53(4)
Yb(2)-Cl(1)	2.816(1)	Yb(1)-Cl(3)-Yb(2)	90.76(4)

3·6THF				
Sm(1)-O(1)	2.205(1)	Sm(2)-Cl(2)	2.846(1)	
Sm(1)-O(2)	2.216(1)	Sm(2)-Cl(3)	2.929(3)	
Sm(1)-O(3)	2.170(1)	Cl(2)-Sm(1)-Cl(3)	75.39 (3)	
Sm(1)-Cl(1)	2.859(1)	O(2)-Sm(1)-Cl(2)	92.80(5)	
Sm(1)-Cl(2)	2.841(1)	O(1)-Sm(1)-O(2)	106.83(7)	
Sm(1)-Cl(3)	2.872(1)	O(1)-Sm(1)-Cl(3)	82.82(5)	
Sm(2)-O(4)	2.191(1)	O(3)-Sm(1)-Cl(1)	161.38(5)	
Sm(2)-O(5)	2.199(1)	Sm(1)-Cl(1)-Sm(2)	90.19(1)	
Sm(2)-O(6)	2.191(1)	Sm(1)-Cl(2)-Sm(2)	90.77 (2)	
Sm(2)-Cl(1)	2.856 (4)	Sm(1)-Cl(3)-Sm(2)	88.50(1)	

Table S6 Selected bond lengths (Å) and bond angles (°) for complex 3.6THF.

Table S7 Selected bond lengths (Å) and bond angles ($^{\rm o}$) for complex 4·5.5THF.

4·5.5THF				
Nd(1)-O(1)	2.221(2)	Nd(2)-Cl(2)	2.915(2)	
Nd(1)-O(2)	2.225(2)	Nd(2)-Cl(3)	2.877(1)	
Nd(1)-O(3)	2.226(2)	Cl(2)-Nd(1)-Cl(3)	75.90(2)	
Nd(1)-Cl(1)	2.908(0)	O(2)-Nd(1)-Cl(2)	85.98(6)	
Nd(1)-Cl(2)	2.870(2)	O(1)-Nd(1)-O(2)	100.45(8)	
Nd(1)-Cl(3)	2.889(6)	O(1)-Nd(1)-Cl(3)	95.01(6)	
Nd(2)-O(4)	2.232(2)	O(3)-Nd(1)-Cl(1)	160.83(6)	
Nd(2)-O(5)	2.227(2)	Nd(1)-Cl(1)-Nd(2)	89.33(2)	
Nd(2)-O(6)	2.235(2)	Nd(1)-Cl(2)-Nd(2)	90.15(2)	
Nd(2)-Cl(1)	2.919 (6)	Nd(1)-Cl(3)-Nd(2)	90.53(2)	

Characterization data of ligand and complexes 1-5

H₂LCl: White solid. ¹H NMR (400 MHz, DMSO-d₆) δ 9.02 (s, 1H), 8.80 (s, 2H), 7.69 (d, J = 1.6 Hz, 2H), 7.23 (d, J = 2.4 Hz, 2H), 7.08 (d, J = 2.4 Hz, 2H), 5.50 (s, 4H), 1.34 (s, 18H), 1.21 (s, 18H) ppm.

L₃Y₂Cl₃ (1): Colorless crystals. Yield: 1.58 g (88%). Mp. 342.7–344.3 °C. Anal. Calcd for C₉₉H₁₄₁N₆O₆Cl₃Y₂ (1792.81): C 66.23, H 7.92, N 4.68; Found: C 66.41, H 8.36, N 4.57. ¹H NMR (400 MHz, Tol-*d*₈): δ 9.53 (s, 3H), 7.33 (s, 6H), 6.81 (s, 6H), 6.24 (d, *J* = 13.0 Hz, 6H), 5.70 (s, 6H), 3.61 (d, *J* = 13.0 Hz, 6H), 1.28 (s, 54H), 1.22 (s, 54H) ppm. ¹³C{¹H} NMR (101 MHz, Tol-*d*₈) δ 161.73 (d, *J* = 5.1 Hz), 139.1, 137.9, 136.7, 125.0, 124.8, 122.8, 118.2, 52.9, 35.2, 33.8, 31.7, 30.2 ppm. IR (cm⁻¹) v 2951.3, 1467.5, 1438.3, 1359.4, 1290.9, 1274.1, 1128.4, 834.0, 794.6, 745.4, 643.3.

L₃Yb₂Cl₃ (2): Yellow crystals. Yield: 1.67 g (85%). Mp. 345.5–346.9 °C. Anal. Calcd for $C_{107}H_{157}N_6O_8Cl_3Yb_2$ (2034.93): C 60.77, H 7.38, N 4.13; Found: C 60.54, H 7.88, N 3.85. IR (cm⁻¹) v 2951.0, 1465.2, 1438.5, 1359.5, 1292.6, 1275.1, 1132.5, 834.2, 792.9, 745.6, 643.3.

L₃**Sm**₂**Cl**₃ (3): Yellow crystals. Yield: 1.34 g (70%). Mp. 343.5–345.1 °C. Anal. Calcd for $C_{107}H_{157}N_6O_8Cl_3Sm_2$ (2062.95): C 62.31, H 7.67, N 4.07; Found: C 62.53, H 8.16, N 4.01. IR (cm⁻¹) v 2951.7, 1464.2, 1438.4, 1359.7, 1292.9, 1275.4, 1131.3, 832.4, 792.1, 743.9, 643.7.

L₃Nd₂Cl₃ (4): Blue crystals. Yield: 1.23 g (65%). Mp. 347.5–349.2 °C. Anal. Calcd for $C_{103}H_{149}N_6O_7Cl_3Nd_2$ (1970.87): C 62.54, H 7.59, N 4.25; Found: C 62.22, H 7.97, N 4.20. IR (cm⁻¹) v 2951.0, 1464.8, 1438.0, 1359.7, 1330.8, 1274.8, 1128.1, 831.2, 792.4, 743.0, 642.4.

L₃**L**₂**Cl**₃ (5): Colorless crystals. Yield: 1.04 g (55%). Mp. 346.3–347.8 °C. Anal. Calcd for C₁₀₆H₁₄₉N₆O₆Cl₃La₂ (1984.87): C 64.06, H 7.56, N 4.23; Found: C 64.32, H 7.96, N 3.96. ¹H NMR (400 MHz, C₆D₆): δ 9.74 (s, 3H), 7.56 (d, *J* = 2.6 Hz, 6H), 6.97 (d, *J* = 2.5 Hz, 6H), 6.33 (d, *J* = 13.2 Hz, 6H), 5.78 (d, *J* = 1.5 Hz, 6H), 3.79 (d, *J* = 13.1 Hz, 6H), 1.58 (s, 54H), 1.37 (s, 54H) ppm. ¹³C{¹H} NMR (101 MHz, C₆D₆): δ 162.8, 138.3, 137.0, 136.4, 125.3, 124.8, 122.0, 118.6, 52.0, 35.1, 33.8, 31.7, 30.2 ppm. IR (cm⁻¹) v 2951.9, 1466.5, 1436.4, 1358.1, 1275.6, 1233.7, 830.8, 791.2, 736.0, 643.1.

NMR spectra of the complexes 1 and 5

Fig. S5 ¹H NMR spectrum of complex 1 in Tol-*d*₈

Fig. S6 ¹³C{¹H} NMR spectrum of complex 1 in Tol-*d*₈

Fig. S7 ¹H NMR spectrum of complex 5 in C₆D₆

Characterization data of the propiolic acids

Phenylpropiolic acid (6a)^{4,5}. White solid, 70.8 mg, yield 97%; Mp. 141.5–142.3 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.05 (s, 1H, COOH), 7.61-7.59 (m, 2H, ArH); 7.49-7.45 (m, 1H, ArH); 7.40-7.36 (t, *J* = 7.5 Hz, 2H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 158.8, 133.3, 131.2, 128.7, 119.1, 89.2, 80.1 ppm. HRMS (ESI, m/z) calcd for C₉H₇O₂⁺: 147.0440, found: 147.0452.

2-Fluorophenylpropiolic acid (6b)^{4,5}. White solid, 76.3 mg, yield 93%; Mp. 118.7–120.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.92 (s, 1H, COOH), 7.73-7.69 (t, *J* = 1.7 Hz, 1H, ArH); 7.65–7.59 (m, 1H, ArH); 7.42-7.37 (t, *J* = 9.1 Hz, 1H, ArH); 7.34-7.30 (t, *J* = 7.4 Hz,1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 163.3 (d, ¹*J*_{*C*-F} = 253.2 Hz), 154.4, 135.0, 133.9 (d, ³*J*_{*C*-F} = 8.1 Hz), 125.6 (d, ⁴*J*_{*C*-F} = 3.0 Hz), 116.5 (d, ²*J*_{*C*-F} = 20.2 Hz), 108.1 (d, ²*J*_{*C*-F} = 16.1 Hz), 86.8 (d, ³*J*_{*C*-F} = 3.0 Hz), 78.1 ppm. ¹⁹F NMR (377 MHz, DMSO-*d*₆): δ –109.0 ppm. HRMS (ESI, m/z) calcd for C₉H₅O₂FNa⁺:187.0165, found: 187.0167.

4-Fluorophenylpropiolic acid (6c)^{4,5}. White solid, 80.4 mg, yield 98%; Mp. 151.1– 152.3 °C. ¹HNMR (400 MHz, DMSO-*d*₆): δ 13.80 (s, 1H, COOH), 7.73-7.70 (m, 2H, ArH); 7.35-7.31 (m, 2H, ArH) ppm. ¹³C NMR (101 MHz, DMSO-*d*₆): δ 163.7 (d, ¹*J*_{*C*-} *F* = 251.5 Hz), 154.7, 135.8 (d, ³*J*_{*C*-*F*} = 9.1 Hz), 116.9 (d, ²*J*_{*C*-*F*} = 22.2 Hz), 115.9 (⁴*J*_{*C*-} *F* = 3.0 Hz), 83.8, 82.1 ppm. ¹⁹F NMR (377 MHz, DMSO-*d*₆): δ -107.0 ppm. HRMS (ESI, m/z) calcd for C₉H₆O₂F⁺:165.0346, found: 165.0347.

4-Chlorophenylpropiolic acid (6d)^{4,5}. White solid, 86.4 mg, yield 96%; Mp. 189.5–190.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.91 (s, 1H, COOH), 7.67-7.65 (d, *J* = 8.6 Hz, 2H, ArH); 7.56-7.54 (d, *J* = 8.6 Hz, 2H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.6, 136.3, 134.8, 129.7, 118.3, 83.6, 83.0 ppm. HRMS (ESI, m/z) calcd for C₉H₅O₂ClNa⁺: 202.9870, found: 202.9876.

4-Bromophenylpropiolic acid (6e)^{4,5}. Light yellow solid, 109.7 mg, yield 98%; Mp. 198.5–200.1 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 13.87 (s, 1H, COOH), 7.70-7.68 (d, J = 8.6 Hz, 2H, ArH); 7.59-7.57 (d, J = 8.6 Hz, 2H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ 154.6, 134.9, 132.6, 125.1, 118.7, 83.6, 83.2 ppm. HRMS (ESI, m/z) calcd for C₉H₅O₂BrNa⁺: 246.9365, found: 246.9365.

3-Bromophenylpropiolic acid (6f)^{4,5}. White solid, 106.4 mg, yield 95%; Mp. 187.5–188.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.84 (s, 1H, ArH); 7.75-7.73 (d, *J* = 8.1 Hz, 1H, ArH); 7.64-7.62 (d, *J* = 7.8 Hz, 1H, ArH); 7.44-7.40 (t, *J* = 7.9 Hz, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.5, 135.1, 134.3, 132.1, 131.5, 122.3, 121.7, 83.1 82.9 ppm. HRMS (ESI, m/z) calcd for C₉H₅O₂BrNa⁺: 246.9365, found: 246.9370.

4-Trifluoromethylphenylpropiolic acid (6g)^{4,5}. White solid, 102.7 mg, yield 96%;

Mp. 142.3–143.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.86-7.81 (m, 4H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.4, 133.8, 130.9 (q, ²*J*_{*C*-*F*} = 32.3 Hz), 126.3 (q, ³*J*_{*C*-*F*} = 4.0 Hz), 125.5, 123.3 (d, ¹*J*_{*C*-*F*} = 103.0 Hz), 83.9, 82.7 ppm. ¹⁹F NMR (377 MHz, DMSO-*d*₆): δ -61.7 ppm. HRMS (ESI, m/z) calcd for C₁₀H₆O₂F₃⁺: 215.0314, found: 215.03116.

3-(3,5-Bis(trifluoromethyl)phenyl)propiolic acid (6h)^{4,5}. White solid, 136.7 mg, yield 97%; Mp. 135.2–136.1 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.35 (s, 2H, ArH); 8.24 (s, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.2, 133.6 (d, ³*J*_{C-F} = 3.0 Hz), 131.5 (q, ²*J*_{C-F} = 33.3 Hz), 124.5, 123.1 (q, ¹*J*_{C-F} = 274.7 Hz), 122.4, 84.4, 80.9 ppm. ¹⁹F NMR (377 MHz, DMSO-*d*₆): δ -61.7 ppm. HRMS (ESI, m/z) calcd for C₁₁H₅O₂F₆⁺:283.0188, found: 283.0191.

4-Nitrophenylpropiolic acid (6i)^{4,5}. Yellow solid, 91.7 mg, yield 96%; Mp. 173.5–174.7 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.29-8.27 (d, *J* = 8.9 Hz, 2H, ArH); 7.92-7.90 (d, *J* = 8.9 Hz, 2H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.3, 148.7, 134.3, 126.1, 124.4, 85.5, 82.2 ppm. HRMS (ESI, m/z) calcd for C₉H₅O₄NNa⁺: 214.0110, found: 214.0115.

4-Cyanophenylpropiolic acid(6j)⁵. White solid, 83.7 mg, yield 98%; Mp. 178.6–179.5 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 7.94-7.92 (d, J = 8.3 Hz, 2H, ArH); 7.82-7.80 (d, J = 8.3 Hz, 2H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ 154.3, 133.6, 133.2, 124.3, 118.5, 113.5, 85.0, 82.6 ppm. HRMS (EI, m/z) calcd for C₁₀H₅O₂N⁺: 171.0320, found: 171.0326.

4-Formylphenylpropiolic acid (6k)⁵. White solid, 85.3 mg, yield 98%; Mp. 189.5–190.6 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 13.97 (s, 1H, COOH), 10.06 (s, 1H, CHO), 7.99-7.97 (d, J = 8.2 Hz, 2H, ArH); 7.85-7.83 (d, J = 8.1 Hz, 2H, ArH) ppm. ¹³C NMR (101 MHz, DMSO- d_6): δ 193.0, 154.4, 137.4, 133.6, 130.1, 125.1, 84.6, 83.4 ppm. HRMS (EI, m/z) calcd for C₁₀H₆O₃⁺: 174.0317, found: 174.0313.

4-(Methoxycarbonyl)phenylpropiolic acid (61)⁵. Light yellow solid, 99.8 mg, yield 98%; Mp. 162.8–163.7 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 8.03-8.00 (d, J = 8.3 Hz, 2H, ArH); 7.78-7.76 (d, J = 8.3 Hz, 2H, ArH); 3.89 (s, 3H, OCH₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ 165.8, 154.4, 133.3, 131.6, 129.9, 124.1, 84.2, 83.3, 52.9 ppm. HRMS (EI, m/z) calcd for C₁₁H₈O₄⁺: 204.0423, found: 204.0429.

4-Methylphenylpropiolic acid (6m)^{4,5}. White solid, 78.4 mg, yield 98%; Mp. 151.5–152.6 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.51-7.49 (d, *J* = 8.1 Hz, 2H, ArH); 7.28-7.26 (d, *J* = 8.0 Hz, 2H, ArH); 2.34 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.9, 141.6, 133.1, 130.1, 116.3, 85.3, 81.9, 21.6 ppm. HRMS (ESI, m/z) calcd for C₁₀H₉O₂⁺: 161.0597, found: 161.0596.

3-Methylphenylpropiolic acid (6n)^{4,5}. White solid, 72.1 mg, yield 90%; Mp. 130.7–131.5 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 7.44 (s, 1H, ArH); 7.42-7.40 (m, 1H, ArH); 7.36 (s, 1H, ArH); 7.34 (s, 1H, ArH); 2.32 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ 154.8, 139.0, 133.3, 132.1, 130.2, 129.4, 119.3, 85.0, 82.0, 21.1 ppm. HRMS (ESI, m/z) calcd for C₁₀H₈O₂Na⁺: 183.0416, found: 183.0422.

4-tert-Butylphenylpropiolic acid (60)^{4,5}. White solid, 97.1 mg, yield 96%; Mp. 155.5–156.2 °C. ¹H NMR (400 MHz, CDCl₃): δ 10.65 (s, 1H, COOH), 7.59-7.57 (d, *J* = 8.5 Hz, 2H, ArH); 7.44-7.42 (d, *J* = 8.5 Hz, 2H, ArH); 1.34 (s, 9H, CH₃) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 158.8, 154.9, 133.2, 125.8, 116.0, 89.6, 79.9, 35.1, 31.0 ppm. HRMS (ESI, m/z) calcd for C₁₃H₁₄O₂Na⁺: 225.0886, found: 225.0887.

3-(Biphenyl-4-yl)propiolic acid (6p)^{4,5}. Brown solid, 106.6 mg, yield 96%; Mp. 162.4–163.3 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.76 (s, 1H, COOH), 7.79-7.77 (d, *J* = 8.4 Hz, 2H, ArH); 7.73-7.71 (m, 4H, ArH); 7.52-7.48 (t, *J* = 7.5 Hz, 2H, ArH); 7.44-7.40 (t, *J* = 7.3 Hz, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.8, 142.8, 139.2, 133.7, 129.6, 128.8, 127.6, 127.3, 118.3, 84.8, 82.9 ppm. HRMS (ESI, m/z) calcd For C₁₅H₁₀O₂Na⁺: 245.0573, found: 245.0569.

4-Methoxylphenylpropiolic acid (6q)^{4,5}. Brown solid, 57.2 mg, yield 65%; Mp. 153.6–154.2 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 7.59-7.57 (d, *J* = 8.8 Hz, 2H, ArH); 7.03-7.01 (d, *J* = 8.9 Hz, 2H, ArH); δ 3.81 (s, 3H, CH₃) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 161.7, 155.0, 135.1, 115.2, 111.0, 85.8, 81.5, 55.9 ppm. HRMS (ESI, m/z) calcd for C₁₀H₉O₃⁺: 177.0546, found: 177.0559.

3-(Naphthalen-1-yl)propiolic acid (6r)⁵. White solid, 97.1 mg, yield 99%; Mp. 135.8–136.5 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.88 (s, 1H, COOH), 8.24-8.22 (d, *J* = 7.2 Hz, 1H, ArH); 8.13-8.11 (d, *J* = 7.2 Hz, 1H, ArH); 8.04-8.03 (d, *J* = 7.0 Hz, 1H, ArH); 7.93-7.92 (d, *J* = 5.6 Hz, 1H, ArH); 7.72-7.58 (m, 3H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.8, 133.3, 133.2, 133.1, 131.9, 129.2, 128.5, 127.6, 126.1, 125.3, 116.8, 86.9, 82.9 ppm. HRMS (EI, m/z) calcd for C₁₃H₈O₂: 196.0524, found: 196.0521.

3-(Phenanthren-9-yl)propiolic acid (6s)⁵. White solid, 121.8 mg, yield 99%; Mp. 183.8–184.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.01 (s, 1H, COOH), 8.93-8.91 (m, 1H, ArH); 8.88-8.86 (d, *J* = 8.1 Hz, 1H, ArH); 8.43 (s, 1H, ArH); 8.32-8.31 (d, *J* = 4.9 Hz, 1H, ArH); 8.10-8.08 (d, *J* = 7.6 Hz, 1H, ArH); 7.82 (s, 1H, ArH); 7.74-7.71 (t, *J* = 7.3 Hz, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.8, 135.6, 131.0, 130.7, 130.3, 130.0, 129.7, 128.4, 128.1, 126.1, 124.1, 123.5, 115.7, 86.5, 83.0 ppm. HRMS (ESI, m/z) calcd for C₁₇H₉O₂ [M–H]⁻: 245.0608, found: 245.0612.

3-(Pyren-1-yl)propiolic acid (6t)^{4,5}**.** Yellow solid, 133.7 mg, yield 99%; Mp. 172.6–173.4 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 14.01 (s, 1H, COOH), 8.47–8.39 (m, 4H,

ArH); 8.33–8.31 (m, 3H, ArH); 8.24 (d, J = 8.9 Hz, 1H, ArH); 8.18-8.14 (t, J = 7.6 Hz, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ 154.9, 133.1, 133.0, 131.3, 131.1, 130.7, 130.2, 130.0, 127.6, 127.5, 127.2, 127.1, 125.4, 124.5, 123.8, 123.5, 113.2, 87.6, 84.0 ppm. HRMS (ESI, m/z) calcd for C₁₉H₁₁O₂⁺: 271.0753, found: 271.0768.

3-(Thiophen-2-yl)propiolic acid (6u)^{4,5}. Brown solid, 75.2 mg, yield 99%; Mp. 153.7–154.9 °C. ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.85 (s, 1H, COOH), 7.88-7.87 (d, *J* = 5.1 Hz, 1H, ArH); 7.68-7.66 (dd, *J*₁ = 3.7 Hz, *J*₂ = 1.0 Hz, 1H, ArH); 7.21-7.18 (dd, *J*₁ = 5.1 Hz, *J*₂ = 3.7Hz, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO-*d*₆): δ 154.6, 137.5, 133.2, 128.8, 118.7, 86.3, 78.9 ppm. HRMS (ESI, m/z) calcd for C₇H₅O₂S⁺: 153.0005, found: 153.0010.

3,3'-(1,3-Phenylene)dipropiolic acid (6v)^{4,5}. White solid, 101.7 mg, yield 95%; Mp. 298.7 °C (dec.). ¹H NMR (400 MHz, DMSO- d_6): δ 13.91 (s, 1H, COOH), 7.86 (s, 1H, ArH); 7.80-7.77 (dd, J = 7.8, 1.4 Hz, 2H, ArH); 7.60-7.56 (t, J = 7.8 Hz, 1H, ArH) ppm. ¹³C{¹H} NMR (101 MHz, DMSO- d_6): δ 154.5, 136.3, 135.1, 130.3, 120.4, 83.0, 82.9 ppm. HRMS (ESI, m/z) calcd for C₁₂H₆O₄Na⁺: 237.0158, found: 237.0150.

3,3',3''-(1,3,5-Phenylene)tripropiolic acid (6w)⁵. Light yellow solid, 121.3 mg, yield 86%; 301.3 °C (dec.). ¹H NMR (300 MHz, DMSO-*d*₆): δ 7.99 (s, 3H, ArH) ppm. ¹³C{¹H} NMR (75 MHz, DMSO-*d*₆): δ 154.4, 137.8, 121.6, 83.9, 81.4 ppm.

Characterization data of the esters of propiolic acids

Butyl 3-phenylpropiolate (7a)⁷. Light yellow liquid, 97.1 mg, yield 96%; ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.55 (m, 2H, ArH), 7.44-7.41 (t, *J* = 7.5 Hz, 1H, ArH), 7.37-7.33 (t, *J* = 7.4 Hz, 2H, ArH), 4.24-4.21 (t, *J* = 6.7 Hz, 2H, OCH₂), 1.72-1.65 (dd, *J* = 14.5, 7.4 Hz, 2H, CH₂), 1.47-1.38 (dd, *J* = 15.1, 7.5 Hz, 2H, CH₂), 0.97-0.93 (t, *J* = 7.4 Hz, 3H, CH₃) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 154.1, 132.9, 130.6, 128.5, 119.6, 85.9, 80.8, 65.8, 30.5, 19.0, 13.6 ppm. HRMS (ESI, m/z) calcd for C₁₃H₁₄O₂Na⁺: 225.0886, found: 225.0889.

Benzyl 3-phenylpropiolate (7b)⁶. Light yellow liquid, 94.4 mg, yield 80%; ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.58 (m, 2H, ArH), 7.47-7.36 (m, 8H, ArH), 5.29 (s, 2H, OCH₂) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 153.9, 135.0, 133.1, 130.8, 128.7, 128.7, 128.6, 119.6, 86.8, 80.6, 67.7 ppm. HRMS (ESI, m/z) calcd for C₁₆H₁₂O₂Na⁺: 259.0730, found: 259.0725.

Cinnamyl 3-phenylpropiolate (7c)⁶. Light yellow liquid, 117.9 mg, yield 90%; ¹H NMR (400 MHz, CDCl₃): δ 7.57-7.55 (m, 2H, ArH), 7.43-7.23 (m, 8H, ArH), 6.72-6.68 (d, J = 15.9 Hz, 1H, CH), 6.34-6.27 (dt, J = 15.9, 6.6 Hz, 1H, CH), 4.88-4.86 (dd, J = 6.6, 1.2 Hz, 2H, OCH₂) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ

153.9, 136.0, 135.4, 133.1, 130.8, 128.7, 128.6, 128.3, 126.8, 122.1, 119.6, 86.7, 80.6, 66.6 ppm. HRMS (ESI, m/z) calcd for $C_{18}H_{14}O_2Na^+$: 285.0886, found: 285.0893.

Butyl 3-(4-(trifluoromethyl)phenyl)propiolate (7d)⁷. Light yellow liquid, 121.5 mg, yield 90%; ¹H NMR (400 MHz, CDCl₃): δ 7.66-7.64 (d, J = 8.3 Hz, 2H, ArH), 7.61-7.59 (d, J = 8.4 Hz, 2H, ArH), 4.24-4.21 (t, J = 6.7 Hz, 2H, OCH₂), 1.71-1.63 (m, 2H, CH₂), 1.45-1.36 (dt, J = 14.7, 7.5 Hz, 2H, CH₂), 0.94-0.91 (t, J = 7.4 Hz, 3H, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 153.6, 133.1, 132.0 (q, ² $J_{C-F} = 33.3$ Hz), 125.4 (q, ³ $J_{C-F} = 4.0$ Hz), 123.6 (q, ¹ $J_{C-F} = 273.7$ Hz), 123.5, 83.6, 82.3, 66.1, 30.4, 19.0, 13.5 ppm. ¹⁹F NMR (377 MHz, CDCl₃): δ -63.3 ppm. HRMS (ESI, m/z) calcd for C₁₄H₁₃O₂F₃Na⁺: 293.0760, found: 293.0745.

Butyl 3-(*p*-tolyl)propiolate (7e)⁷. Light yellow liquid, 91.8 mg, yield 85%; ¹H NMR (400 MHz, CDCl₃): δ 7.48-7.46 (d, *J* = 8.2 Hz, 2H, ArH), 7.17-7.15 (d, *J* = 7.9 Hz, 2H, ArH), 4.24-4.20 (t, *J* = 6.7 Hz, 2H, OCH₂), 2.36 (s, 3H, ArCH₃), 1.71-1.65 (m, 2H, CH₂), 1.47-1.38 (dt, *J* = 14.7, 7.4 Hz, 2H, CH₂), 0.97-0.93 (t, *J* = 7.4 Hz, 3H, CH₃) ppm. ¹³C NMR (101 MHz, CDCl₃): δ 154.3, 141.2, 133.0, 129.3, 116.5, 86.6, 80.4, 65.8, 30.5, 21.7, 19.1, 13.7 ppm. HRMS (ESI, m/z) calcd for C₁₄H₁₆O₂Na⁺: 239.1045, found: 239.1043.

Butyl 3-(thiophen-2-yl)propiolate (7f)⁷. Brown liquid, 72.8 mg, yield 70%; ¹H NMR (400 MHz, CDCl₃): δ 7.47-7.43 (dd, J = 8.5, 4.4 Hz, 2H, ArH), 7.04-7.02 (dd, J = 5.0, 3.8 Hz, 1H, ArH), 4.24-4.20 (t, J = 6.7 Hz, 2H, OCH₂), 1.71-1.64 (m, J = 14.4, 7.4 Hz, 2H, CH₂), 1.46-1.37 (dt, J = 14.9, 7.4 Hz, 2H, CH₂), 0.96-0.92 (t, J = 7.4 Hz, 3H, CH₃) ppm. ¹³C{¹H} NMR (101 MHz, CDCl₃): δ 154.1, 136.5, 131.1, 127.5, 119.4, 84.9, 80.0, 65.9, 30.5, 19.1, 13.7 ppm. HRMS (ESI,m/z) calcd for C₁₁H₁₂O₂SNa⁺: 231.0450, found: 231.0442.

NMR spectra of the propiolic acids

Fig. S10 $^{13}C{^{1}H}$ NMR spectrum of 6a in CDCl₃

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1(ppm)

Fig. S14 ¹H NMR spectrum of 6c in DMSO- d_6

Fig. S16 ¹³C{¹H} NMR spectrum of **6c** in DMSO- d_6

Fig. S18 ${}^{13}C{}^{1}H$ NMR spectrum of **6d** in DMSO- d_6

Fig. S20 $^{13}C{^{1}H}$ NMR spectrum of **6e** in DMSO- d_6

Fig. S22 ¹³C{¹H} NMR spectrum of **6f** in DMSO- d_6

Fig. S24 ¹⁹F NMR spectrum of **6g** in DMSO- d_6

Fig. S26 ¹H NMR spectrum of **6h** in DMSO- d_6

Fig. S28 ${}^{13}C{}^{1}H$ NMR spectrum of **6h** in DMSO- d_6

Fig. S30 $^{13}C{^{1}H}$ NMR spectrum of **6i** in DMSO- d_6

Fig. S38 $^{13}C{^{1}H}$ NMR spectrum of **6m** in DMSO- d_6

Fig. S40 $^{13}C{^{1}H}$ NMR spectrum of **6n** in DMSO- d_6

Fig. S42 $^{13}C{^{1}H}$ NMR spectrum of **60** in DMSO- d_6

Fig. S44 $^{13}C{^{1}H}$ NMR spectrum of **6p** in DMSO- d_6

Fig. S46 ${}^{13}C{}^{1}H$ NMR spectrum of **6q** in DMSO- d_6

8 () 1

Fig. S52 $^{13}C{^{1}H}$ NMR spectrum of **6t** in DMSO- d_6

Fig. S56 ${}^{13}C{}^{1}H$ NMR spectrum of **6v** in DMSO- d_6

Fig. S58 ${}^{13}C{}^{1}H$ NMR spectrum of **6w** in DMSO- d_6

NMR spectra of the esters of propiolic acids

Fig. S60 $^{13}C{^{1}H}$ NMR spectrum of 7a in CDCl₃

Fig. S62 ¹³C{¹H} NMR spectrum of 7b in CDCl₃

Fig. S64 $^{13}C\{^{1}H\}$ NMR spectrum of 7c in CDCl₃

References

- Yao, H.; Zhang, Y.; Sun, H.; Shen, Q. Anionic Lanthanide Complexes Bearing a Bis(Phenoxy)-Functionalized *N*-Heterocyclic Carbene Ligand: Syntheses and Molecular Structures. *Eur. J. Inorg. Chem.* 2009, 1920–1925.
- (2) Deng, H. N.; Xing, Y. L.; Xia, C. L.; Sun, H. M.; Shen, Q.; Zhang, Y. Ionic Iron(III) Complexes of Bis(Phenol)-Functionalized Imidazolium Cations: Synthesis, Structures and Catalysis for Aryl Grignard Cross-Coupling of Alkyl Halides. *Dalton Trans.* 2012, *41*, 11597–11607.
- (3) Xia, C. L.; Xie, C. F.; Wu, Y. F.; Sun, H. M.; Shen, Q.; Zhang, Y. Efficient Cross-Coupling of Aryl Grignard Reagents with Alkyl Halides by Recyclable Ionic Iron(III) Complexes Bearing a Bis(Phenol)-Functionalized Benzimidazolium Cation. *Org. Biomol. Chem.* **2013**, *11*, 8135–8144.
- (4) Shi, J. Bin; Bu, Q.; Liu, B. Y.; Dai, B.; Liu, N. Organocatalytic Strategy for the Fixation of CO₂ via Carboxylation of Terminal Alkynes. *J. Org. Chem.* 2021, *86*, 1850–1860.
- (5) Yu, B.; Yang, P.; Gao, X.; Yang, Z.; Zhao, Y.; Zhang, H.; Liu, Z. Sequential Protocol for C(sp)–H Carboxylation with CO₂: KO^tBu-Catalyzed C(sp)–H Silylation and KO^tBu-Mediated Carboxylation. *Sci. China Chem.* **2018**, *61*, 449– 456.
- (6) Papastavrou, A. T.; Pauze, M.; Gómez-Bengoa, E.; Vougioukalakis, G. C. Unprecedented Multicomponent Organocatalytic Synthesis of Propargylic Esters via CO₂ Activation. *ChemCatChem* **2019**, *11*, 5379–5386.
- (7) Bondarenko, G. N.; Dvurechenskaya, E. G.; Magommedov, E. S.; Beletskaya, I. P. Copper(0) Nanoparticles Supported on Al₂O₃ as Catalyst for Carboxylation of Terminal Alkynes. *Catal. Lett.* **2017**, *147*, 2570–2580.