Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## Fe<sup>II</sup>, Co<sup>II</sup> and Ni<sup>II</sup> complexes based on 1-chloro-3-(pyridin-2-

### yl)imidazo[1,5-a]pyridine: synthesis, structures, single-molecule

### magnetic and electrocatalytic properties

Xiamei Zhang,<sup>a</sup> Chengying He,<sup>a</sup> Xiaohan Yang,<sup>a</sup> Qian Zhang,<sup>a</sup> Yahong Li <sup>\*a</sup> and Jinlei Yao <sup>\*b</sup>

<sup>a</sup>College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China

<sup>b</sup>Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Mathematics and Physics, Suzhou University of Science and Technology, Suzhou, 215009, China

\*Corresponding author. Tel: +86-512-65880323, E-mail: <u>liyahong@suda.edu.cn</u>(Y. H. Li)

Tel: +86-0512-68320027, E-mail: jlyao@usts.edu.cn (J. L. Yao)

#### Content

| Figure S1 <sup>1</sup> H NMR spectrum of the L ligand                                                       | 2 |
|-------------------------------------------------------------------------------------------------------------|---|
| Figure S2 <sup>13</sup> C NMR spectrum of the L ligand                                                      | 2 |
| Figure S3 PXRD patterns of complexes 1(a), 2(b) and 3(c)                                                    | 3 |
| Figure S4 FT-IR spectra of complexes 1(a), 2(b) and 3(c) and the L ligand (d)                               | 4 |
| Figure S5 Coordination environments of metals of complexes 1(a), 2(b) and 3(c)                              | 5 |
| Figure S6 Temperature dependence of the in-phase $\chi'$ (a) and out-of-phase $\chi''$ (b                   | ) |
| susceptibilities for complex 1 at zero dc field and the frequency of 1000 Hz between 2 and                  | b |
| 22 K                                                                                                        | 7 |
| Figure S7 Magnetic field dependence of the out-of-phase ( $\chi''$ ) susceptibilities for <b>1</b> in the 0 | _ |
| 10000 Oe dc field (at temperature of 2 K and frequency of 1000 Hz).                                         | 7 |
| Table S1 Selected bond lengths (Å) and angles (°) of 1-3                                                    | 3 |
| Table S2 Shape analysis for six-coordinated Fe <sup>II</sup> ion of complex 110                             | ) |
| Table S3 Shape analysis for four-coordinated Fe <sup>II</sup> ion of complex 110                            | ) |
| Table S4 Shape analysis for six-coordinated Co <sup>II</sup> ion of complex 210                             | ) |
| Table S5 Shape analysis for four-coordinated Co <sup>II</sup> ion of complex 21                             | 1 |
| Table S6 Shape analysis for six-coordinated Ni <sup>II</sup> ion of complex 31                              | 1 |



Figure S1 <sup>1</sup>H NMR spectrum of the L ligand.



Figure S2 <sup>13</sup>C NMR spectrum of the L ligand.



Figure S3 PXRD patterns of complexes **1**(a), **2**(b) and **3**(c).



(a)



4



(c)



Figure S4 FT-IR spectra of complexes 1(a), 2(b) and 3(c) and the L ligand (d).



Figure S5 Coordination environments of metals of complexes  $\mathbf{1}(a)$ ,  $\mathbf{2}(b)$  and

(c).



Figure S6 Temperature dependence of the in-phase  $\chi'$  (a) and out-of-phase  $\chi''$  (b) susceptibilities for complex **1** at zero dc field and the frequency of 1000 Hz between 2 and 22 K.



Figure S7 Magnetic field dependence of the out-of-phase ( $\chi$ ") susceptibilities for **1** in the 0-10000 Oe dc field (at temperature of 2 K and frequency of 1000 Hz).

|                                        | Compound 1 |                                      |            |  |  |  |
|----------------------------------------|------------|--------------------------------------|------------|--|--|--|
| Fe1-Cl4 <sup>1</sup>                   | 2.5029(9)  | Fe1-Cl4                              | 2.5028(10) |  |  |  |
| Fe1-N4 <sup>1</sup>                    | 2.166(3)   | Fe1-N4                               | 2.167(3)   |  |  |  |
| Fel-N6 <sup>1</sup>                    | 2.219(2)   | Fel-N6                               | 2.219(2)   |  |  |  |
| Fe2-Cl4                                | 2.3990(10) | Fe2-Cl4 <sup>1</sup>                 | 2.3989(10) |  |  |  |
| Fe2-Cl6                                | 2.2516(9)  | Fe2-Cl6 <sup>1</sup>                 | 2.2515(9)  |  |  |  |
| Cl4-Fe1-Cl4 <sup>1</sup>               | 90.98(4)   | N4 <sup>1</sup> -Fe1-Cl4             | 90.83(7)   |  |  |  |
| N4 <sup>1</sup> -Fe1-Cl4 <sup>1</sup>  | 167.59(7)  | N4-Fe1-Cl4 <sup>1</sup>              | 90.83(7)   |  |  |  |
| N4-Fe1-Cl4                             | 167.59(7)  | N4 <sup>1</sup> -Fe1-N4              | 90.03(14)  |  |  |  |
| N4 <sup>1</sup> -Fe1-N6                | 102.03(9)  | N4 <sup>1</sup> -Fe1-N6 <sup>1</sup> | 75.05(9)   |  |  |  |
| N4-Fe1-N6                              | 75.05(9)   | N4-Fe1-N6 <sup>1</sup>               | 102.03(9)  |  |  |  |
| N6 <sup>1</sup> -Fe1-Cl4 <sup>1</sup>  | 92.67(7)   | N6-Fe1-Cl4 <sup>1</sup>              | 90.15(7)   |  |  |  |
| N6-Fe1-Cl4                             | 92.67(7)   | N6 <sup>1</sup> -Fe1-Cl4             | 90.15(7)   |  |  |  |
| N6 <sup>1</sup> -Fe1-N6                | 175.98(14) | Cl4 <sup>1</sup> -Fe2-Cl4            | 96.15 (5)  |  |  |  |
| Cl6 <sup>1</sup> -Fe2-Cl4 <sup>1</sup> | 108.05 (4) | Cl6-Fe2-Cl4 <sup>1</sup>             | 108.49 (3) |  |  |  |
| Cl6-Fe2-Cl4                            | 108.05(4)  | Cl61-Fe2-Cl4                         | 108.50(3)  |  |  |  |
| Cl61-Fe2-Cl6                           | 124.04(6)  | Fe2-Cl4-Fe1                          | 86.44(3)   |  |  |  |
| C14-N4-Fe1                             | 114.6(2)   | C17-N4-Fe1                           | 137.1(2)   |  |  |  |
|                                        | Compo      | ound <b>2</b>                        |            |  |  |  |
| Co1-Cl <sup>1</sup>                    | 2.2338(11) | Co1-Cl1                              | 2.2338(11) |  |  |  |
| Co1-Cl2                                | 2.3356(12) | Co1-Cl2 <sup>1</sup>                 | 2.3356(12) |  |  |  |
| Co2-Cl2                                | 2.4972(12) | Co2-Cl2 <sup>1</sup>                 | 2.4973(12) |  |  |  |
| Co2-N1 <sup>1</sup>                    | 2.171(3)   | Co2-N1                               | 2.171(3)   |  |  |  |
| Co2-N2 <sup>1</sup>                    | 2.111(3)   | Co2-N2                               | 2.111(3)   |  |  |  |
| Cl11-Co1-Cl1                           | 118.26(7)  | Cl11-Co1-Cl2                         | 109.07(4)  |  |  |  |
| Cl1 <sup>1</sup> -Co1-Cl2 <sup>1</sup> | 110.22(4)  | Cl1-Co1-Cl2 <sup>1</sup>             | 109.07(4)  |  |  |  |
| Cl1-Co1-Cl2                            | 110.23(4)  | N1-Co2-Cl2                           | 92.49(9)   |  |  |  |

Table S1 Selected bond lengths (Å) and angles (°) of **1-3** 

| N1 <sup>1-</sup> Co2-Cl2                                                                                        | 88.59(9)   | N1-Co2-Cl2 <sup>1</sup>               | 88.59(9)   |  |  |
|-----------------------------------------------------------------------------------------------------------------|------------|---------------------------------------|------------|--|--|
| N1 <sup>1</sup> -Co2-Cl2 <sup>1</sup>                                                                           | 92.49(9)   | N1 <sup>1</sup> -Co2-N1               | 178.48(19) |  |  |
| N2-Co2-Cl2 <sup>1</sup>                                                                                         | 90.75(9)   | N2 <sup>1</sup> -Co2-Cl2 <sup>1</sup> | 169.01(7)  |  |  |
| N2-Co2-Cl2                                                                                                      | 169.01(7)  | N2 <sup>1</sup> -Co2-Cl2              | 90.75(9)   |  |  |
| N2-Co2-N1                                                                                                       | 76.55(11)  | N2 <sup>1</sup> -Co2-N1               | 102.35(11) |  |  |
| N2-Co2-N11                                                                                                      | 102.35(11) | N21-Co2-N11                           | 76.55(11)  |  |  |
| N2 <sup>1</sup> -Co2-N2                                                                                         | 90.70(18)  | Co1-Cl2-Co2                           | 85.99(4)   |  |  |
| C2-N1-Co2                                                                                                       | 125.3(3)   | C5-N1-Co2                             | 116.3(2)   |  |  |
|                                                                                                                 | Compo      | und <b>3</b>                          |            |  |  |
| Ni1-Cl2                                                                                                         | 2.4119(5)  | Ni1-Cl2 <sup>1</sup>                  | 2.4119(6)  |  |  |
| Ni1-N2 <sup>1</sup>                                                                                             | 2.1272(16) | Ni1-N2                                | 2.1272(17) |  |  |
| Nil-N4                                                                                                          | 2.0963(16) | Nil-N4 <sup>1</sup>                   | 2.0963(16) |  |  |
| Cl21-Ni1-Cl                                                                                                     | 294.36(3)  | N2 <sup>1</sup> -Ni1-Cl2 <sup>1</sup> | 170.68(5)  |  |  |
| N2 <sup>1</sup> -Ni1-Cl                                                                                         | 291.00(5)  | N2-Ni1-Cl2                            | 170.68(5)  |  |  |
| N2-Ni1-Cl21                                                                                                     | 91.00(5)   | N2 <sup>1</sup> -Ni1-N2               | 84.74(9)   |  |  |
| N4 <sup>1</sup> -Ni1-Cl2 <sup>1</sup>                                                                           | 94.34(5)   | N4-Ni1-Cl2                            | 94.34(5)   |  |  |
| N4-Ni1-Cl2 <sup>1</sup>                                                                                         | 90.64(5)   | N41-Ni1-Cl2                           | 90.64(5)   |  |  |
| N41-Ni1-N2                                                                                                      | 96.56(6)   | N4 <sup>1</sup> -Ni1-N2 <sup>1</sup>  | 77.96(6)   |  |  |
| N4-Ni1-N2                                                                                                       | 77.96(6)   | N4-Ni1-N2 <sup>1</sup>                | 96.56(6)   |  |  |
| N4-Ni1-N4 <sup>1</sup>                                                                                          | 172.68(9)  | C4-N2-Ni1                             | 111.84(12) |  |  |
| C12-N2-Ni1                                                                                                      | 140.64(14) | C2-N4-Ni1                             | 116.88(13) |  |  |
| The symmetric code for 1: <sup>1</sup> 1-x,+y,3/2-z; 2: <sup>1</sup> 1-x,+y,3/2-z; 3: <sup>1</sup> 1-x,+y,1/2-z |            |                                       |            |  |  |

 Table S2 Shape analysis for six-coordinated Fe<sup>II</sup> ion of complex 1

| HP-6   | 1 | $D_{6h}$        | Hexagon                         |
|--------|---|-----------------|---------------------------------|
| PPY-6  | 2 | C <sub>5v</sub> | Pentagonal pyramid              |
| OC-6   | 3 | O <sub>h</sub>  | Octahedron                      |
| TPR-6  | 4 | D <sub>3h</sub> | Trigonal prism                  |
| JPPY-6 | 5 | C <sub>5v</sub> | Johnson pentagonal pyramid (J2) |

| Structure [ML <sub>6</sub> ] | HP-6   | PPY-6  | OC-6  | TPR-6  | JPPY-6 |
|------------------------------|--------|--------|-------|--------|--------|
| Complex <b>1</b>             | 28.875 | 23.710 | 1.683 | 13.570 | 28.193 |

### Table S3 Shape analysis for four-coordinated Fe<sup>II</sup> ion of complex 1

| SP-4 | 1 | D <sub>4h</sub> | Square      |
|------|---|-----------------|-------------|
| T-4  | 2 | Td              | Tetrahedron |
| SS-4 | 3 | C <sub>2V</sub> | Seesaw      |

| Structure [ML <sub>4</sub> ] | SP-4   | T-4   | SS-4  |
|------------------------------|--------|-------|-------|
| Complex 1                    | 33.445 | 0.473 | 7.167 |

Table S4 Shape analysis for six-coordinated Co<sup>II</sup> ion of complex **2** 

| HP-6   | 1 | D <sub>6h</sub> | Hexagon                         |
|--------|---|-----------------|---------------------------------|
| PPY-6  | 2 | C <sub>5v</sub> | Pentagonal pyramid              |
| OC-6   | 3 | O <sub>h</sub>  | Octahedron                      |
| TPR-6  | 4 | D <sub>3h</sub> | Trigonal prism                  |
| JPPY-6 | 5 | C <sub>5v</sub> | Johnson pentagonal pyramid (J2) |

| Structure [ML <sub>6</sub> ] | HP-6   | PPY-6  | OC-6  | TPR-6  | JPPY-6 |
|------------------------------|--------|--------|-------|--------|--------|
| Complex 2                    | 28.695 | 24.026 | 1.549 | 13.666 | 28.526 |

# Table S5 Shape analysis for four-coordinated Co<sup>II</sup> ion of complex 2

| SP-4 | 1 | D <sub>4h</sub> | Square      |
|------|---|-----------------|-------------|
| T-4  | 2 | Td              | Tetrahedron |
| SS-4 | 3 | C <sub>2V</sub> | Seesaw      |

| Structure [ML <sub>4</sub> ] | SP-4   | T-4   | SS-4  |
|------------------------------|--------|-------|-------|
| Complex <b>2</b>             | 32.351 | 0.277 | 8.388 |

Table S6 Shape analysis for six-coordinated Ni<sup>II</sup> ion of complex **3** 

| HP-6   | 1 | D <sub>6h</sub>                    | Hexagon                         |
|--------|---|------------------------------------|---------------------------------|
| PPY-6  | 2 | C <sub>5v</sub> Pentagonal pyramid |                                 |
| OC-6   | 3 | O <sub>h</sub>                     | Octahedron                      |
| TPR-6  | 4 | D <sub>3h</sub>                    | Trigonal prism                  |
| JPPY-6 | 5 | C <sub>5v</sub>                    | Johnson pentagonal pyramid (J2) |

| Structure [ML <sub>6</sub> ] | HP-6   | PPY-6  | OC-6  | TPR-6  | JPPY-6 |
|------------------------------|--------|--------|-------|--------|--------|
| Complex 3                    | 29.733 | 25.386 | 1.265 | 14.357 | 30.085 |