SUPPLEMENTARY INFORMATION

A Metal free approach to highly functionalized 3-substituted-3-arylbenzofuran-2(3H)-ones

Bhaskar B. Dhotare,^a Sahil Kumar,^a Amey Wadawale,^b Sandip K. Nayak,^a Mukesh Kumar^{c,d} and Dibakar Goswami^{a,d}* ^aBio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, PIN-400085. ^bChemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, PIN-400085 ^cRadiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India, PIN-400085. ^dHomi Bhabha National Institute, Anushaktinagar, Mumbai, India, PIN-400094.

*Corresponding author

Spectral data for synthesized compounds

3-(2,4-Dimethoxyphenyl)-3-phenylbenzofuran-2(3H)-one (3aa). The crude product was purified by column chromatography (silica gel, 0-15% EtOAc/hexane) to afford compound **3aa** (white solid, 152.3 mg, 88% yield). mp 108 -109 °C; IR (neat) ν_{max} 2420, 1797, 1605, 1502, 1311, 1051 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.48 (m, 2H), 7.36-7.32 (m, 4H), 7.17-7.13 (m, 2H), 7.07 (d, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 8.0, Hz, 1H), 6.42-6.39 (m, 2H), 3.77 (s, 3H) 3.59 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.9, 160.7, 157.6, 153.5, 137.3, 130.7, 130.2, 129.2, 128.7, 128.5, 128.2, 125.8, 123.8, 123.7, 110.4, 104.7, 99.6, 57.3, 55.7, 55.4. HRMS (ESI) calcd for C₂₂H₁₉O₄ (M + H)⁺ 347.1283; found 347.1278.

3-Phenyl-3-(p-tolyl)benzofuran-2(3H)-one (3ab). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3ab** (white solid; 106.6 mg, 71% yield); mp 105-106 °C; IR (neat) ν_{max} 2916, 1795, 1598, 1330, 941 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.29 (m, 7H), 7.21-7.19 (m, 2H), 7.18-7.13 (m, 4H), 2.34 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.0, 152.5, 140.7, 137.7, 137.6, 131.3, 129.4, 129.1, 128.7, 128.1, 127.9, 127.8, 126.1, 124.5, 111.1, 61.0, 21.0. HRMS (ESI) calcd for C₂₁H₂₀NO₂ (M + NH₄)⁺ 318.1494; found 318.1488.

3-(2/5-Hydroxy-2/5-methylphenyl)-3-phenylbenzofuran-2(3H)-one (3ac). The crude product was purified by column chromatography (silica gel, 0-20% EtOAc/hexane) to afford compound **3ac** (white solid; 96.5 mg, 61% yield); mp 182-183 °C; IR (neat) v_{max} 3341, 1762, 1302, 1083, 999 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.35-7.33 (m, 5H), 7.26-7.11 (m, 3H), 7.02-6.88 (m, 3H), 6.76-6.72 (m, 1H), 6.60 and 6.26 (two broad s, 1H), 2.34 and 2.20 (two s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 179.8, 179.4, 154.3, 152.8, 151.9, 150.7, 138.1, 138.0, 134.2, 130.4, 130.3, 130.0, 129.9, 129.8, 129.7, 1.29.5, 129.1, 128.8, 128.1, 127.7, 126.8, 126.4, 124.4, 120.6, 118.1, 118.0, 111.0, 110.6, 59.7, 59.5, 21.2, 20.6. HRMS (ESI) calcd for C₂₁H₁₇O₃ (M+H)⁺ 317.1178; found 317.1172.

3-(5-Allyl-2-methoxyphenyl)-3-phenylbenzofuran-2(3H)-one (3ad). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3ad** (white solid; yield; 94.4 mg, 53% yield); mp 130-131 °C; IR (neat) v_{max} 2975, 1799, 1280, 1180, 987 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46 (m, 2H), 7.36-7.33 (m, 4H), 7.19-7.14 (m, 2H), 7.09 (t, *J* = 7.5 Hz, 2H), 6.80 (d, *J* = 8.5 Hz, 1H), 6.70 (s, 1H), 5.90-5.84 (m, 1H), 5.01-4.94 (m, 2H), 3.60 (s, 3H), 3.24 (d, *J* = 6.5 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.5, 155.0, 153.5,

137.4, 137.1, 132.3, 131.1, 130.3, 129.7, 129.1, 128.7, 128.3, 128.1, 125.8, 125.8, 123.6, 115.5, 112.2, 110.3, 57.7, 55.8, 39.3. HRMS (ESI) calcd for $C_{24}H_{21}O_3$ (M + H)⁺ 357.1491; found 357.1485.

3-(2,4-Dimethoxyphenyl)-5-methyl-3-phenylbenzofuran-2(3H)-one (3ba). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3ba** (white solid; 135.2 mg, 75% yield); mp 141-142 °C; IR (neat) v_{max} 2913, 1792, 1459, 1311, 1051 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.46 (m, 2H), 7.36-7.34 (m, 3H), 7.12 (d, *J* = 8.5, Hz, 1H), 7.04 (d, *J* = 8.0, Hz, 1H), 6.86 (s, 1H), 6.75 (d, *J* = 8.0, Hz, 1H), 6.42-6.39 (m, 2H), 3.77 (s, 3H) 3.61 (s, 3H), 2.33 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 178.1, 160.6, 157.6, 151.4, 137.4, 133.2, 130.4, 130.1, 129.2, 129.1, 128.4, 128.0, 126.2, 124.0, 110.0, 104.6, 99.6, 57.4, 55.7, 55.3, 21.2. HRMS (ESI) calcd for C₂₃H₂₁O₄ (M + H)⁺ 361.1440; found 361.1424.

5-Methyl-3-phenyl-3-(p-tolyl)benzofuran-2(3H)-one (3bb). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3bb** (white solid; 116.3 mg, 74% yield); mp 149-150 °C; IR (neat) v_{max} 2919, 1796, 1445, 1254, 1083 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.36-7.30 (m, 5H), 7.20-7.14 (m, 5H), 7.11-7.09 (m, 2H), 2.35 and 2.36 (two s merged together, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.3, 150.4, 140.8, 137.8, 137.6, 134.1, 131.0, 129.5, 129.3, 128.6, 128.0, 127.9, 127.7, 126.4, 110.6, 61.1, 21.2, 21.0. HRMS (ESI) calcd for C₂₂H₁₈NaO₂ (M + Na)⁺ 337.1204; found 337.1199.

3-(2-Hydroxy-5-methylphenyl)-5-methyl-3-phenylbenzofuran-2(3H)-one (3bc). The crude product was purified by column chromatography (silica gel, 0-20% EtOAc/hexane) to afford compound **3bc** (white solid; 120.5 mg, 73% yield); mp 136-137 °C; IR (neat) v_{max} 3516, 3431, 1805, 1767, 1484, 1106 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.36-7.29 (m, 5H), 7.17-7.15 (m, 1H), 7.11-7.09 (m, 1H), 7.05-7.03 (m, 1H), 6.96 (s, 1H), 6.77 (d, *J* = 8.5 Hz, 1H), 6.72 (s, 1H), 6.23 (s, 1H), 2.35 (s, 3H), 2.21 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 179.7, 152.0, 150.7, 138.3, 134.1, 130.3, 130.2, 129.9, 129.7, 128.8, 128.1, 127.7, 126.8, 126.2, 118.1, 110.6, 59.7, 21.2, 20.7. HRMS (ESI) calcd for C₂₂H₁₈NaO₃ (M + Na)⁺ 353.1154; found 353.1149.

3-(5-allyl-2-methoxyphenyl)-5-methyl-3-phenylbenzofuran-2(3H)-one (3bd). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3bd** (colourless viscous oil; 129.6 mg, 70% yield); IR (neat) v_{max} 2916, 1797, 1502, 1158, 1054 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.45 (s, 2H), 7.35-7.34 (m, 3H), 7.14-7.05 (m, 3H), 6.86 (s, 1H), 6.81 (d, *J* = 8.5 Hz, 1H), 6.69 (d, *J* = 1.0 Hz, 1H), 5.91-5.83 (m, 1H), 5.01-4.94 (m, 2H), 3.62 (s, 3H), 3.24 (d, *J* = 6.0 Hz, 2H), 2.33 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 177.8, 155.1,

151.5, 137.4, 137.3, 133.2, 132.3, 131.3, 130.1, 129.8, 129.2, 129.0, 128.3, 128.0, 126.2, 115.5, 112.3, 109.9, 57.9, 55.9, 39.3, 21.1. HRMS (ESI) calcd for $C_{25}H_{23}O_3$ (M + H)⁺ 371.1647; found 371.1632.

3-(2/5-hydroxy-2/5-isopropylphenyl)-5-methyl-3-phenylbenzofuran-2(3H)-one (3be). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3be** (viscous liquid; 123.6 mg, 69% yield); IR (neat) v_{max} 3472, 2959, 1782, 1612, 1485, 1270 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.37-7.29 (m, 3H), 7.28-7.20 (m, 2H), 7.17-7.12 (m, 1H), 7.11-7.08 (m, 1H), 7.00-6.92 (two s, 1H), 6.81-6.70 (m, 3H), 6.32 and 6.38 (two broad s, 1H), 2.93-2.85 and 2.79-2.70 (two m, 1H), 2.34 and 2.19 (two s, 3H), 1.22 (dd, *J* = 5.4 Hz and 1.2 Hz, 3H), 1.13 (d, *J* = 6.0 Hz, 3H); ¹³C{¹H} NMR (200 MHz, CDCl3) δ = 179.9, 179.8, 152.2, 150.9, 145.4, 141.0, 138.4, 134.1, 130.3, 130.2, 129.9, 129.8, 129.7, 128.8, 128.2, 128.1, 128.0, 127.8, 127.6, 127.4, 126.9, 126.8, 126.4, 126.3, 124.6, 118.1, 117.8, 110.7, 59.9, 59.8, 33.9, 33.3, 26.9, 24.3, 24.2, 24.0, 21.3, 20.7. Anal. Found: C, 80.35; H, 6.47. Calcd. for C₂₄H₂₂O₃: C, 80.42; H, 6.19 %.

3-(2/5-(tert-butyl)-2/5-hydroxyphenyl)-5-methyl-3-phenylbenzofuran-2(3H)-one (*3bf*) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3bf** (viscous liquid; 115.5 mg, 62% yield); IR (neat) v_{max} 3417, 2960, 1778, 1486, 1064 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.44-7.20 (m, 7H), 7.19-6.99 (m, 3H), 6.98-6.85 (m, 1H), 6.84-6.68 (m, 1H), 2.35 and 2.20 (two s, 3H), 1.29 and 1.18 (two s, 9H); ¹³C{¹H} NMR (200 MHz, CDCl₃) δ = 180.0, 179.8, 152.2, 151.9, 150.8, 150.6, 147.8, 143.3, 138.4, 134.1, 130.3, 129.9, 129.6, 128.8, 128.1, 127.8, 127.6, 126.8, 126.5, 123.5, 118.3, 117.6, 110.7, 110.3, 60.0, 34.7, 34.2, 31.5, 31.4, 21.2, 20.7. Anal. Found: C, 80.48; H, 6.34. Calcd. for C₂₅H₂₄O₃: C, 80.62; H, 6.50 %.

3-(2/5-(*sec-butyl*)-2/5-*hydroxyphenyl*)-5-*methyl*-3-*phenylbenzofuran*-2(3*H*)-*one* (3*bg*) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3bg** (viscous liquid; 139.7 mg, 75% yield); IR (neat) v_{max} 3457, 2962, 1780, 1612, 1476, 1280, 1140 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.28-7.23 (m, 6H), 7.20-7.07 (m, 2H), 7.06-7.01 (m, 1H), 6.96-6.89 (m, 1H), 6.82-6.76 (m, 1H), 6.75-6.69 (m, 1H), 2.64-2.53 and 2.47-2.39 (two m, 1H), 2.33 and 2.19 and 2.18 (three s, 3H), 1.62-1.50 and 1.49-1.38 (two m, 2H), 1.21 (d, *J* = 7.8 Hz) and 1.19 (d, *J* = 7.2 Hz) and 1.11 (t, *J* = 7.2 Hz) (3H), 0.82 (t, *J* = 6.6 Hz) and 0.77 (t, *J* = 7.0 Hz) (3H); ¹³C{¹H} NMR (200 MHz, CDCl₃) δ = 180.2, 179.9, 179.8, 179.7, 152.2, 150.9, 139.7, 138.5, 138.4, 134.1, 130.5, 130.4, 130.3, 130.2, 129.9, 129.8, 129.7, 128.9, 128.8, 128.4, 128.1, 127.9, 127.8, 127.6, 127.4, 126.8, 125.4, 125.1, 118.4, 118.2, 117.8, 110.8, 110.7, 60.1, 59.9, 59.7, 41.4, 41.3, 40.8, 31.5, 31.4, 31.1, 29.7, 22.0, 21.9, 21.8, 21.6, 21.3, 20.7, 12.2, 12.1 Anal. Found: C, 80.66; H, 6.23. Calcd. for C₂₅H₂₄O₃: C, 80.62; H, 6.50 %.

3-(2/5-(hexyloxy)-2/5-hydroxyphenyl)-5-methyl-3-phenylbenzofuran-2(3H)-one (3bh) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3bh** (viscous liquid; 147.9 mg, 71% yield); IR (neat) v_{max} 3482, 2963, 1785, 1142 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ (ppm): 7.55-7.38 (m, 1H), 7.37-7.24 (m, 5H), 7.17-7.05 (m, 1H), 7.04-6.98 (m, 1H), 6.97-6.83 (m, 1H), 6.82-6.74 (m, 1H), 6.72-6.66 (m, 1H), 6.52 (d, *J* = 2.4 Hz) and 6.33 (d, *J* = 1.8 Hz) (1H), 3.88-3.86 and 3.79-3.74 and 3.65-3.61 (three m, 2H), 2.33 and 2.32 and 2.20 (three s, 3H), 1.78-1.71 and 1.70-1.66 (two m, 2H), 1.57-1.47 and 1.46-1.20 (two m, 6H), 0.90-0.86 (two t merged together, 3H); ¹³C{¹H} NMR (200 MHz, CDCl3) δ = 179.8, 179.6, 178.0, 156.2, 151.6, 150.2, 149.2, 148.0, 138.1, 137.2, 133.3, 131.8, 130.3, 130.2, 130.0, 129.8, 129.2, 128.8, 128.5, 128.2, 127.9, 126.8, 126.5, 126.4, 118.6, 117.8, 117.3, 116.8, 116.1, 115.7, 115.3, 114.8, 114.5, 113.2, 113.1, 111.4, 110.7, 110.1, 69.3, 68.8, 68.7, 60.1, 59.6, 58.1, 31.8, 29.7, 29.4, 29.3, 29.1, 28.6, 26.0, 25.9, 22.7, 22.6, 21.2, 20.7, 14.2, 14.1. Anal. Found: C, 78.02; H, 6.64. Calcd. for C₂₇H₂₈O₄: C, 77.86; H, 6.78 %.

5-methyl-3-phenyl-3-(thiophen-2-yl)benzofuran-2(3H)-one (3bi) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3bi** (colourless liquid; 88.8 mg, 58% yield); IR (neat) v_{max} 3064, 2919, 1799, 1448, 1132 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.38-7.28 (m, 6H), 7.24-7.13 (m, 2H), 7.12-7.06 (m, 2H), 7.03-6.95 (m, 1H), 2.37 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 176.1, 150.5, 142.8, 140.4, 134.5, 131.2, 130.1, 128.8, 128.2, 127.8, 127.6, 127.4, 126.8, 126.5, 126.2, 110.8, 58.1, 21.3. Anal. Found: C, 74.32; H, 4.81; S, 10.28. Calcd. for C₁₉H₁₄O₂S: C, 74.49; H, 4.61; S, 10.46%.

5-Bromo-3-(2,4-dimethoxyphenyl)-3-phenylbenzofuran-2(3H)-one (3ca) The crude product was purified by column chromatography (silica gel, 0-15% EtOAc/hexane) to afford compound **3ca** (white solid; 155.2 mg, 73% yield); mp 130-132 °C; IR (neat) v_{max} 2917, 1808, 1583, 1319, 1086 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.44 (m, 3H), 7.37-7.35 (m, 3H), 7.18 (d, *J* = 1.5 Hz, 1H), 7.05 (d, *J* = 8.5 Hz, 1H), 6.72 (d, *J* = 8.5 Hz, 1H), 6.42-6.39 (m, 2H), 3.78 (s, 3H) 3.62 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ = 177.0, 160.9, 157.5, 152.5, 136.5, 132.8, 131.7, 130.2, 129.0, 128.8, 128.6, 128.4, 123.0, 116.2, 112.0, 104.8, 99.5, 57.5, 55.6, 55.4. HRMS (ESI) calcd for C₂₂H₁₈BrO₄ (M + H)⁺ 425.0388; found 425.0383.

3-(5-Allyl-2-methoxyphenyl)-5-bromo-3-phenylbenzofuran-2(3H)-one (3cd). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **3ca** (white solid; 141.4 mg, 65% yield); mp 175-176 °C IR (neat) v_{max} 2916, 1800, 1493, 1461, 1261, 1062 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.48-7.37 (m, 6H), 7.18 (d, *J* = 2.0, Hz, 1H), 7.12 (dd, *J* = 1.0 and 8.0 Hz, 1H), 7.07 (d, *J* = 1.0 and 8.0 Hz, 1H), 7

= 8.5 Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 6.65 (d, J = 1.5 Hz, 1H), 5.90-5.81 (m, 1H), 5.01-4.95 (m, 2H), 3.62 (s, 3H), 3.23 (d, J = 6.5 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl3) δ = 176.7, 155.0, 152.5, 137.3, 136.4, 132.5, 131.8, 130.3, 129.7, 129.5, 129.0, 128.8, 128.5, 128.4, 116.2, 115.6, 112.1, 112.0, 57.9, 55.8, 39.3. HRMS (ESI) calcd for C₂₄H₂₀BrO₃ (M + H)⁺ 435.0596; found 435.0590.

2-(5-Methyl-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-1,3-diphenylpropane-1,3-dione (*4a*) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **4a** (white solid; 189.7 mg, 85% yield); mp 211-212 °C; IR (neat) v_{max} 3014, 2339, 1784, 1657, 1485, 1228 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (t, *J* = 6.5, Hz, 4H), 7.50-7.44 (m, 5H), 7.31-7.27 (m, 4H), 7.19-7.09 (m, 4H), 7.05-7.03 (m, 1H), 6.50 (s, 1H), 2.44 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 194.6, 194.2, 177.1, 151.6, 136.5, 135.4, 135.2, 133.4, 133.2, 129.7, 128.7, 128.6, 128.5, 128.4, 128.2, 128.1, 127.6, 126.6, 110.3, 63.5, 55.2, 21.5. HRMS (ESI) calcd for C₃₀H₂₂NaO₄ (M + Na)⁺ 469.1416; found 469.1410.

2-(5-Bromo-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-1,3-diphenylpropane-1,3-dione (4b). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound 4b (white solid; 219.9 mg, 86% yield); mp 212-213 °C; IR (neat) v_{max} 3100, 1791, 1594, 1461, 1182 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, J = 1.5 Hz, 1H), 7.69 (dd, J = 1.5 and 6.0 Hz, 4H), 7.54 (dd, J = 1.5 and 8.5 Hz, 1H), 7.49-7.46 (m, 4H), 7.32-7.26 (m, 4H), 7.17-7.07 (m, 4H), 6.44 (s, 1H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 194.5, 193.9, 176.1, 152.7, 136.2, 135.1, 134.0, 133.7, 132.2, 130.5, 129.3, 128.9, 128.7, 128.6, 128.4, 127.5, 116.4, 112.3, 63.6, 55.2. HRMS (ESI) calcd for C₂₉H₁₉BrKO₄ (M + K)⁺ 549.0104; found 549.0098 .

ethyl 2-(5-methyl-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)-3-oxobutanoate (*4c*) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **4c** (colourless liquid; 126.9 mg, 72% yield); IR (neat) v_{max} 2978, 1803, 1703, 1484, 1134 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, *J* = 7.5 Hz, 1H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.33 (t, *J* = 7.5 Hz, 2H), 7.16-7.08 (m, 3H), 7.02 (d, *J* = 7.5 Hz, 1H), 6.52 (s, 1H), 4.14-4.05 (m, 1H), 4.04-3.99 (m, 1H), 2.69 (s, 3H), 2.21 (s, 3H), 1.04 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 174.8, 163.3, 156.7, 152.8, 145.4, 144.2, 133.9, 131.5, 129.7, 129.6, 128.9, 127.6, 123.5. 122.9, 122.2, 110.5, 62.9, 60.5, 20.9, 13.6, 12.7. Anal. Found: C, 71.73; H, 5.48. Calcd. for C₂₁H₂₀O₅: C, 71.58; H, 5.72 %.

diethyl 2-(5-methyl-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)malonate (4d) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **4d** (colourless liquid; 130.0 mg, 68% yield); IR (neat) v_{max} 3012, 1854, 1768, 1164 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.87 (s, 1H), 7.36-7.31 (m, 2H), 7.30-7.24 (m, 5H), 7.22-7.18 (m, 1H), 7.07-7.03 (m, 1H), 5.30 (broad s, 0.3 H), 4.86 (s, 1H), 4.04 (q, *J* = 7.5 Hz, 2H), 3.95-3.88 (m, 2H), 2.42 (s, 3H), 1.05 (t, *J* = 7.0 Hz, 3H), 0.94 (t, *J* = 7.0 Hz, 3H), 0.88 (t, *J* = 6.5 Hz, 2H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ 176.7, 166.5, 166.3, 151.9, 136.1, 134.0, 130.3, 128.7, 128.3, 127.1, 126.2, 110.3, 62.2, 61.6, 59.3, 55.4, 29.7, 22.7, 21.4, 14.1, 13.7, 13.3. Anal. Found: C, 69.08; H, 5.94. Calcd. for C₂₂H₂₂O₆: C, 69.10; H, 5.80 %.

2-((5-Methyl-2-oxo-3-phenyl-2,3-dihydrobenzofuran-3-yl)thio)acetic acid (5a). The crude product was purified by column chromatography (silica gel, 0-40% EtOAc/hexane) to afford compound 5a (colourless oil; 114.7 mg, 73% yield); IR (neat) vmax 3020, 2915, 1793, 1698, 1484, 1064 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.68-7.64 (m, 2H), 7.44-7.39 (m, 2H), 7.38-7.33 (m, 1H), 7.19-7.14 (m, 2H), 7.07-7.03 (m, 1H), 3.44 (d, *J* = 15.5 Hz, 1H), 3.34 (d, *J* = 16.0 Hz, 1H), 2.33 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.8, 174.3, 150.1, 134.8, 130.9, 129.1, 128.9, 127.4, 127.3, 125.8, 110.9, 56.3, 32.8, 21.1. Anal. Found: C, 65.11; H, 4.22; S, 10.26. Calcd. for C₁₇H₁₄O₄S: C, 64.95; H, 4.49; S, 10.20 %.

3-((tert-Butylthio)oxy)-5-methyl-3-phenylbenzofuran-2(3H)-one (5b). The crude product was purified by column chromatography (silica gel, 0-5% EtOAc/hexane) to afford compound **5b** (colourless oil; 93.7 mg, 60% yield); IR (neat) v_{max} 2961, 1799, 1484, 1254, 1083 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.69-7.66 (m, 2H), 7.38-7.27 (m, 4H), 7.20-7.15 (m, 1H), 7.08-7.03 (m, 1H), 2.41 (s, 3H), 1.15 (s, 9H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 176.6, 149.9, 136.7, 134.1, 130.3, 128.7, 128.6, 128.4, 127.5, 127.4, 110.8, 56.9, 48.6, 31.5, 21.2. HRMS (ESI) calcd for C₁₉H₂₄NO₂S (M + NH₄)⁺ 330.1528; found 330.1522.

5-Methyl-3-((4-nitrobenzyl)-oxy)-3-phenylbenzofuran-2(3H)-one (5c). The crude product was purified by column chromatography (silica gel, 0-20% EtOAc/hexane) to afford compound **5c** (white solid; 135.1 mg, 72% yield); mp 82-83 °C; IR (neat) v_{max} 2916, 1818, 1599, 1333, 1137 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 8.20 (d, *J* = 9.0 Hz, 2H), 7.54 (d, *J* = 9.0 Hz, 2H), 7.47-7.43 (m, 2H), 7.42-7.36 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 1H), 7.18-7.13 (m, 2H), 4.55 (dd, *J* = 12.0 and 12.0 Hz, 2H), 2.38, (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.2, 151.9, 147.5, 144.4, 137.1, 135.2, 132.1, 129.3, 128.8, 128.0, 126.3, 126.3, 125.7, 123.6, 111.4, 83.2, 67.0, 21.2. HRMS (ESI) calcd for C₂₂H₁₈NO₅ (M + H)⁺ 376.1185; found 376.1179.

5-*Methyl-3-phenyl-3-(prop-2-yn-1-yloxy)benzofuran-2(3H)-one* (5*d*). The crude product was purified by column chromatography (silica gel, 0-20% EtOAc/hexane) to afford compound 5d (colourless oil; 90.4 mg, 65% yield); IR (neat) ν_{max} 3293, 1812, 1485, 1224, 1066 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.39-7.34 (m, 3H), 7.28-7.23 (m, 1H), 7.17-7.14 (m, 1H), 7.11-7.07 (m, 1H), 4.17 (d, *J* = 2.5 Hz, 2H), 2.45 (t, 2.5 Hz, 1H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.0, 151.9, 137.1, 134.9, 132.0, 129.1, 128.7, 126.6, 126.3, 125.3, 111.3, 82.4, 78.3, 75.6, 54.4, 21.1. Anal. Found: C, 77.78; H, 5.32. Calcd. for C₁₈H₁₄O₃: C, 77.68; H, 5.07 %.

3-Methoxy-5-methyl-3-phenylbenzofuran-2(3H)-one (*5e*). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **5e** (colourless oil; 85.1 mg, 67% yield); IR (neat) v_{max} 2928, 1812, 1484, 1223, 1065 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.41-7.39 (m, 2H), 7.37-7.35 (m, 3H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.12-7.09 (m, 2H), 3.31 (s, 3H), 2.38 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.6, 152.1, 137.7, 134.9, 131.7, 129.0, 128.6, 126.3, 125.9, 111.1, 83.4, 53.7, 21.2. HRMS (ESI) calcd for C₁₆H₁₄NaO₃ (M + Na)⁺ 277.0841; found 277.0835.

3-Ethoxy-5-methyl-3-phenylbenzofuran-2(3H)-one (5f). The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **5f** (white solid; 84.5 mg, 63% yield); mp 122-123 °C; IR (neat) v_{max} 2921, 1799, 1483, 1168, 1069 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.42-7.32 (m, 5H), 7.25-7.22 (m, 1H), 7.11-7.07 (m, 2H), 3.47-3.37 (m, 2H), 2.37 (s, 3H), 1.28 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.9, 151.9, 138.0, 134.7, 131.5, 128.9, 128.6, 126.6, 126.3, 126.2, 110.1, 82.8, 61.9, 21.2, 15.3. Anal. Found: C, 75.81; H, 5.78. Calcd. for C₁₇H₁₆O₃: C, 76.10; H, 6.01 %.

3-((5-chloropentyl)oxy)-5-methyl-3-phenylbenzofuran-2(3H)-one (*5g*) The crude product was purified by column chromatography (silica gel, 0-10% EtOAc/hexane) to afford compound **5g** (colourless liquid; 122.4 mg, 71% yield); IR (neat) v_{max} 3020, 2869, 1811, 1619, 1134 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ (ppm): 7.46-7.30 (m, 5H), 7.29-7.19 (m, 1H), 7.13-7.05 (m, 2H), 3.63-3.47 (m, 2H), 3.45-3.22 (m, 2H), 2.38 (s, 3H), 1.89-1.46 (m, 6H); ¹³C{¹H} NMR (75 MHz, CDCl₃) δ = 174.8, 151.9, 138.0, 134.8, 131.6, 128.9, 128.6, 126.4, 126.2, 111.1, 82.8, 65.7, 44.9, 32.2, 28.9, 23.4, 21.2. Anal. Found: C, 69.49; H, 5.85. Calcd. for C₂₀H₂₁ClO₃: C, 69.66; H, 6.14 %.

Methyl 2-hydroxy-2-(2-hydroxy-5-methylphenyl)-2-phenylacetate (6a). The crude residue which was purified by column chromatography (silica gel, 0-20% EtOAc/hexane) to afford pure **6a** (colourless oil ; 93.9 mg, 69% yield); IR (neat) v_{max} 3100, 1797, 1585, 1484, 1118 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ 7.70 (broad s, 1H), 7.42-7.38 (m, 5H), 7.05 (d, J = 8.0 Hz, 1H), 6.81 (d, J = 8.5 Hz, 1H), 6.66 (s, 1H), 4.57 (broad s, 1H),

3.88 (s, 3H), 2.21 (s, 3H); ¹³C{¹H} NMR (125 MHz, CDCl3) δ 174.2, 153.3, 139.8, 130.6, 128.8, 128.7, 128.6, 128.3, 126.9, 125.5, 117.6, 82.0, 53.7, 20.6. Anal. Found: C, 70.69; H, 5.68. Calcd. for C₁₆H₁₆O₄: C, 70.58; H, 5.92 %.

Ethyl 2-hydroxy-2-(2-hydroxy-5-methylphenyl)-2-phenylacetate (6b). The crude residue which was purified by column chromatography (silica gel, 0-20% EtOAc/hexane) to afford pure **6b** (colourless oil ; 93.0 mg, 65% yield); IR (neat) v_{max} 3381, 1726, 1494, 1221, 1058 cm⁻¹; ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.77 (broad s, 1H), 7.45-7.37 (m, 5H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.82 (d, *J* = 8.0 Hz, 1H), 6.75 (s, 1H), 4.66 (s, 1H), 4.39-4.35 (m, 2H), 2.21 (s, 3H), 1.31 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.5, 153.4, 140.0, 130.5, 128.7, 128.6, 128.4, 128.3, 126.9, 125.4, 117.6, 81.9, 63.2, 20.6, 14.0. Anal. Found: C, 71.53; H, 6.13. Calcd. for C₁₇H₁₈O₄: C, 71.31; H, 6.34 %.

Possible reaction mechanism for dehydrative Friedel Crafts reaction.

Possible reaction mechanism with 1,3-diketones.

3367 3356 3356 3356 3356 356 356 356 356 356	.348

3bd

---21.152

906 8905 8895 7777 759 724 724 724 724 724 724 724 192 192 1133 1133 000000000 -----SSV/// SSVE

3cd

1.599

2.382

.

586 562 534 510

ব ব ব ব

 $\overbrace{77.319}^{83.166}$ m 0 . 67

-21.174

00	n	~~~~~~~					
Ω.	L D	040000000	9	7103	5	8	4
00	00	0 L 4 8 9 5 9 7 1	0	0 0 1 1	9	ъ	5
•	•		•	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	00	-	\sim
4	-	000000000000000000000000000000000000000	-			•	•
	2	0 0 0 0 0 0 0 0 0 0 0	1	0 0	7	-	S
-	-		1	00 F F F	9	\sim	-
				$\setminus \vee$			

 3.55

 3.55

 3.55

 3.55

 3.55

 3.55

 3.55

 3.55

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57

 3.57
 </tr

				[~] OM€ h	÷													
		e	ba															
						I												
				I							. 1							
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	ppm

81	80	C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	m 10 - 1 /9	10	
.1	e.	000000000000000000000000000000000000000	73.62	71.9	
74	23	122 122 122 122 122 122 122 122 122 122			
	-i I		00000	6	
			$\setminus \bigvee$		

Crystallographic data

X-ray data were collected either on an Agilent Supernova system equipped with a microfocus Cu source ($\lambda = 1.54184$ Å) and a Titan CCD detector, or on a XtaLAB Synergy, Dualflex, HyPix four-circle diffractometer with a micro-focus sealed X-ray tube using mirror as monochromator and a HyPix detector. All data were integrated and a multi-scan absorption correction was applied using CrysAlis PRO.^[1,2]The structure were solved by iterative methods using SHELXT and refined by full-matrix least-squares methods against F^2 by SHELXL-2017/1.^[2,3]All non-hydrogen atoms were refined with anisotropic displacement parameters and H atoms were refined isotropically on calculated positions using a riding model. Crystallographic data (including structure factors) for the structures reported in this paper have been deposited with the Cambridge Crystallographic Data Centre. ORTEP was employed for the final data presentation and structure plots.^[4]

Fig. 1. Crystal structure of 3ba (CCDC 2174827)

Table 1.	Crystal	data and	structure	refinement	for 3b	a (CCDC	C 2174827)

Properties	values	Properties	values
Empirical formula	$C_{23}H_{20}O_4$	F(000)	1520
Formula weight	360.39	Crystal size [mm ³]	0.200×0.150×0.100
Temperature [K]	298(2)	Crystal colour	Colourless
Crystal system	monoclinic	Crystal shape	block
Space group (number)	<i>P</i> 2/c (15)	Radiation	Cu K_{α} (λ =1.54184 Å)
<i>a</i> [Å]	18.5957(3)	20 range [°]	9.26 to 153.80 (0.79 Å)
<i>b</i> [Å]	11.1708(2)	Index ranges	$-22 \le h \le 23$
			$-13 \le k \le 12$
			$-22 \le 1 \le 23$
<i>c</i> [Å]	18.5559(3)	Reflections collected	26647
α [Å]	90	Independent reflections	3922
			$R_{\rm int} = 0.0637$
			$R_{ m sigma} = 0.0299$
β [Å]	97.671(2)	Completeness to	99.7 %
		$\theta = 67.684^{\circ}$	
γ [Å]	90	Data / Restraints / Parameters	3922/0/248
Volume [Å ³]	3820.10(11)	Goodness-of-fit on F^2	1.198
Z	8	Final <i>R</i> indexes	$R_1 = 0.0466$
		[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1385$
$\rho_{\rm calc} [{\rm g/cm^3}]$	1.253	Final <i>R</i> indexes	$R_1 = 0.0907$
		[all data]	$wR_2 = 0.1909$
$\mu \ [\mathrm{mm}^{-1}]$	0.690	Largest peak/hole [eÅ ³]	0.41/-0.34
		Extinction coefficient	0.00053(13)

Atom-Atom-Atom	Length [Å]Angle [°]	Atom-Atom-Atom	Length [Å]Angle [°]		
C1–C2	1.514(2)	C3-C2-C1	108.80(15)		
C1–C16	1.532(2)	C7-C2-C1	131.50(16)		
C1–C10	1.537(3)	C2C3C4	122.70(19)		
C1–C9	1.556(3)	C2-C3-O1	112.47(16)		
C2–C3	1.377(3)	C4-C3-O1	124.78(18)		
C2–C7	1.381(3)	C3–C4–C5	116.66(19)		
C3–C4	1.380(3)	C4-C5-C6	122.63(17)		
C3–O1	1.393(2)	C5-C6-C7	118.55(19)		
C4–C5	1.388(3)	C5-C6-C8	121.15(19)		
C5–C6	1.388(3)	C7–C6–C8	120.3(2)		
C6–C7	1.397(2)	C2C7C6	119.83(18)		
C6–C8	1.505(3)	02–C9–O1	120.95(19)		
С9–О2	1.191(2)	O2–C9–C1	129.22(19)		
C9–O1	1.378(2)	O1–C9–C1	109.74(15)		
C10–C15	1.388(3)	C15-C10-C11	118.1(2)		
C10–C11	1.393(3)	C15-C10-C1	121.70(17)		
C11–C12	1.377(4)	C11-C10-C1	120.14(19)		
C12–C13	1.380(5)	C12-C11-C10	120.4(3)		
C13–C14	1.370(4)	C11–C12–C13	120.8(2)		
C14–C15	1.381(3)	C14–C13–C12	119.2(2)		
C16–C21	1.381(2)	C13–C14–C15	120.5(3)		
C16–C17	1.398(2)	C14–C15–C10	120.9(2)		
C17–O3	1.363(2)	C21–C16–C17	117.59(15)		
C17–C18	1.382(2)	C21–C16–C1	122.37(15)		
C18–C19	1.386(3)	C17–C16–C1	119.79(15)		
C19–O4	1.367(2)	O3–C17–C18	123.47(16)		
C19–C20	1.373(3)	O3–C17–C16	115.44(15)		
C20–C21	1.392(2)	C18–C17–C16	121.07(16)		
C22–O3	1.423(3)	C17–C18–C19	119.71(17)		
C23–O4	1.417(3)	O4–C19–C20	124.83(17)		
C2C1C16	110.23(13)	O4–C19–C18	114.59(17)		
C2C1C10	114.13(14)	C20–C19–C18	120.58(16)		
C16–C1–C10	111.70(14)	C19–C20–C21	118.89(16)		
C2–C1–C9	100.11(14)	C16-C21-C20	122.15(16)		
C16-C1-C9	112.46(14)	C9–O1–C3	108.22(15)		
C10–C1–C9	107.68(14)	C17–O3–C22	117.87(16)		
C3–C2–C7	119.59(16)	C19–O4–C23	117.61(18)		

Table 2. Bond lengths and angles for shelx [3ba (CCDC 2174827)]

Fig. 2. Crystal structure of 3bb (CCDC 2174812)

Table 5. Crystal data and structure fermement for 500 (CCDC 2174012)	Table 3.	Crystal da	ata and structur	re refinement for	or 3bb (CCI	DC 2174812)
--	----------	------------	------------------	-------------------	-------------	-------------

Properties	values	Properties	values
Empirical formula	$C_{22}H_{18}O_2$	F(000)	664
Formula weight	314.36	Crystal size [mm ³]	0.010×0.010×0.010
Temperature [K]	298(2)	Crystal colour	colourless
Crystal system	monoclinic	Crystal shape	block
Space group	<i>P</i> 2 ₁ /c (14)	Radiation	Mo <i>K</i> _α (λ=0.71073 Å)
	13 0664(8)	2Θ range [°]	4 05 to 62 31 (0 69 Å)
h [Å]	8 5960(6)	Index ranges	-18 < h < 17
	0.5900(0)	index runges	-12 < k < 12
			-21 < 1 < 21
c [Å]	14 8892(9)	Reflections collected	71229
α [Å]	90	Independent reflections	4903
۵۵ [۲ ۲]	20	independent reflections	$R_{\rm int} = 0.0942$
			$R_{\text{sigma}} = 0.0374$
β[Å]	92.737(5)	Completeness to $0 - 25, 242^{\circ}$	100.0 %
• ГÅ]	00	$\theta = 23.242^{-1}$	4002/0/210
γ[Α]	90	Parameters	4905/0/219
Volume [Å ³]	1670.43(19)	Goodness-of-fit on F^2	1.128
Ζ	4	Final R indexes	$R_1 = 0.0670$
		$[I \ge 2\sigma(I)]$	$wR_2 = 0.2046$
$\rho_{\text{calc}} [\text{g/cm}^3]$	1.250	Final R indexes	$R_1 = 0.1189$
		[all data]	$wR_2 = 0.2890$
$\mu [{ m mm}^{-1}]$	0.079	Largest peak/hole [eÅ ³]	0.32/-0.31

· · · ·				
Atom	x	у	z	$oldsymbol{U}_{ extbf{eq}}$
C1	0.26448(13)	0.6220(2)	0.50327(12)	0.0417(4)
C2	0.30657(14)	0.6287(2)	0.59951(12)	0.0426(4)
C3	0.24222(17)	0.7177(3)	0.64755(15)	0.0542(5)
C4	0.2590(2)	0.7465(4)	0.73788(17)	0.0722(7)
H4	0.214241	0.807226	0.769605	0.087
C5	0.3452(2)	0.6812(3)	0.77919(16)	0.0671(7)
H5	0.358532	0.699121	0.840236	0.081
C6	0.41298(17)	0.5898(2)	0.73330(13)	0.0510(5)
C7	0.39144(14)	0.5621(2)	0.64208(12)	0.0426(4)
H7	0.434396	0.498708	0.610064	0.051
C8	0.5054(2)	0.5221(3)	0.78091(16)	0.0671(7)
H8A	0.526026	0.587158	0.830982	0.101
H8B	0.560092	0.515753	0.740243	0.101
H8C	0.489668	0.419883	0.802188	0.101
C9	0.16310(16)	0.7116(3)	0.51149(15)	0.0523(5)
C10	0.32809(14)	0.7136(2)	0.43756(12)	0.0411(4)
C11	0.42163(16)	0.7781(2)	0.46212(14)	0.0493(5)
H11	0.448271	0.766712	0.520791	0.059
C12	0.47664(17)	0.8600(3)	0.40016(15)	0.0532(5)
H12	0.540342	0.901060	0.417744	0.064
C13	0.43869(18)	0.8818(2)	0.31306(14)	0.0523(5)
C14	0.34509(19)	0.8180(3)	0.28913(14)	0.0568(5)
H14	0.317852	0.832152	0.230858	0.068
C15	0.29034(17)	0.7334(3)	0.34920(14)	0.0513(5)
H15	0.227860	0.689362	0.330627	0.062
C16	0.4978(3)	0.9729(4)	0.2463(2)	0.0787(8)
H16A	0.502743	0.913250	0.192145	0.118
H16B	0.565381	0.994381	0.271433	0.118
H16C	0.463068	1.069053	0.232736	0.118
C17	0.24581(14)	0.4544(2)	0.47383(12)	0.0431(4)
C18	0.32409(16)	0.3721(3)	0.43670(16)	0.0547(5)
H18	0.385283	0.422026	0.425365	0.066
C19	0.3123(2)	0.2160(3)	0.41623(19)	0.0663(7)
H19	0.365819	0.161600	0.391831	0.080
C20	0.2219(2)	0.1405(3)	0.43165(17)	0.0656(7)
H20	0.214063	0.035624	0.417683	0.079
C21	0.1435(2)	0.2217(3)	0.46781(17)	0.0635(6)
H21	0.082003	0.171899	0.478085	0.076
C22	0.15548(17)	0.3768(3)	0.48900(14)	0.0529(5)
H22	0.101886	0.430315	0.513958	0.064
01	0.15776(13)	0.7713(2)	0.59603(12)	0.0664(5)
O2	0.09668(12)	0.7340(2)	0.45617(13)	0.0704(5)

 Table 4. Atomic coordinates and Ueq [Å2] for shelx. [3bb (CCDC 2174812)]

 U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom– Atom-Atom	Length [Å]Angle	Atom–Atom- Atom	Length [Å]Angle	Atom-Atom-Atom	Length [Å]Angle [°]
	[°]		[°]		[] <u>8</u> []
C1–C2	1.511(3)	C20–C21	1.370(4)	C15-C10-C1	119.18(17)
C1–C17	1.522(3)	C20-H20	0.9300	C10-C11-C12	120.63(19)
C1–C10	1.532(3)	C21–C22	1.377(3)	C10-C11-H11	119.7
C1–C9	1.542(3)	C21–H21	0.9300	C12-C11-H11	119.7
C2–C3	1.364(3)	C22–H22	0.9300	C13-C12-C11	121.3(2)
C2–C7	1.376(3)	C2C1C17	110.82(14)	C13-C12-H12	119.3
C3–C4	1.375(3)	C2C1C10	113.70(15)	C11-C12-H12	119.3
C3–O1	1.392(3)	C17–C1–C10	112.78(15)	C14-C13-C12	117.78(19)
C4–C5	1.376(4)	C2C1C9	100.41(15)	C14-C13-C16	121.0(2)
C4–H4	0.9300	C17–C1–C9	111.65(16)	C12-C13-C16	121.2(2)
C5–C6	1.388(3)	C10-C1-C9	106.75(15)	C13-C14-C15	121.7(2)
C5–H5	0.9300	C3–C2–C7	119.69(18)	C13-C14-H14	119.1
C6–C7	1.394(3)	C3-C2-C1	108.25(17)	C15-C14-H14	119.1
C6–C8	1.489(3)	C7–C2–C1	132.05(16)	C14-C15-C10	120.4(2)
C7–H7	0.9300	C2–C3–C4	122.7(2)	C14-C15-H15	119.8
C8–H8A	0.9600	C2C3O1	112.90(19)	C10-C15-H15	119.8
C8–H8B	0.9600	C4-C3-O1	124.4(2)	C13-C16-H16A	109.5
C8–H8C	0.9600	C3–C4–C5	116.9(2)	C13-C16-H16B	109.5
C9–O2	1.183(3)	C3C4H4	121.5	H16A-C16-H16B	109.5
C9–O1	1.364(3)	C5-C4-H4	121.5	C13-C16-H16C	109.5
C10-C11	1.376(3)	C4C5C6	122.6(2)	H16A-C16-H16C	109.5
C10–C15	1.393(3)	C4C5H5	118.7	H16B-C16-H16C	109.5
C11–C12	1.388(3)	C6C5H5	118.7	C18–C17–C22	118.2(2)
C11–H11	0.9300	C5–C6–C7	118.2(2)	C18–C17–C1	119.25(17)
C12–C13	1.379(3)	C5–C6–C8	120.6(2)	C22-C17-C1	122.38(18)
C12–H12	0.9300	C7–C6–C8	121.2(2)	C17–C18–C19	120.5(2)
C13–C14	1.372(3)	C2C7C6	119.89(18)	C17–C18–H18	119.7
C13–C16	1.507(3)	C2C7H7	120.1	C19-C18-H18	119.7
C14–C15	1.379(3)	C6C7H7	120.1	C20-C19-C18	120.6(2)
C14–H14	0.9300	C6C8H8A	109.5	C20-C19-H19	119.7
C15–H15	0.9300	C6-C8-H8B	109.5	C18-C19-H19	119.7
C16–H16A	0.9600	H8A–C8–H8B	109.5	C21-C20-C19	119.2(2)
C16–H16B	0.9600	C6-C8-H8C	109.5	C21-C20-H20	120.4
C16–H16C	0.9600	H8A–C8–H8C	109.5	C19-C20-H20	120.4
C17–C18	1.381(3)	H8B-C8-H8C	109.5	C20-C21-C22	120.3(2)
C17–C22	1.384(3)	O2–C9–O1	120.8(2)	C20-C21-H21	119.9
C18–C19	1.383(3)	O2-C9-C1	129.1(2)	C22-C21-H21	119.9
C18–H18	0.9300	O1–C9–C1	110.07(18)	C21-C22-C17	121.2(2)
C19–C20	1.376(4)	C11-C10-C15	118.15(18)	C21-C22-H22	119.4
C19–H19	0.9300	C11-C10-C1	122.67(17)	C17-C22-H22	119.4
				C9–O1–C3	108.03(16)

 Table 5. Bond lengths and angles for shelx [3bb (CCDC 2174812)]

Fig. 3. Crystal structure of **3bc** (**CCDC 2174811**); Crystal Data for C₂₂H₁₈O₃ (*M* =330.36 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 15.5619(6) Å, *b* = 12.6968(9) Å, *c* = 17.5458(8) Å, *V* = 3466.8(3) Å³, *Z* = 8, *T* = 293 K, μ (CuK α) = 0.670 mm⁻¹, *Dcalc* = 1.266 g/cm³, 7752 reflections measured (10.082° ≤ 2 Θ ≤ 146.718°), 3372 unique (*R*_{int} = 0.1569, R_{sigma} = 0.1077) which were used in all calculations. The final *R*₁ was 0.1250 (I > 2 σ (I)) and *wR*₂ was 0.3596 (all data).

Details:

```
1. Fixed Uiso
At 1.2 times of:
All C(H) groups
At 1.5 times of:
All C(H,H,H) groups, All O(H) groups
2.a Aromatic/amide H refined with riding coordinates:
C3(H3A), C4(H4), C7(H7), C11(H11), C12(H12), C13(H13), C14(H14), C15(H15),
C17(H17), C20(H20), C21(H21)
2.b Idealised Me refined as rotating group:
C1(H1A,H1B,H1C), C19(H19A,H19B,H19C)
2.c Idealised tetrahedral OH refined as rotating group:
O3(H3)
```

Table 6. Crystal	data and	structure	refinement	for	3bc	(CCDC	C 2174811)
------------------	----------	-----------	------------	-----	-----	-------	--------------------

Properties	values	Properties	values
Identification code	BD-25-19_1	$\rho_{calc}g/cm^3$	1.266
Empirical formula Formula weight	$\begin{array}{c} C_{22}H_{18}O_{3}\\ 330.36\end{array}$	μ/mm ⁻¹ F(000)	0.670 1392.0
Temperature/K	293	Crystal size/mm ³	$\begin{array}{c} 0.761 \times 0.455 \times \\ 0.133 \end{array}$
Crystal system	orthorhombic	Radiation	$CuK\alpha (\lambda = 1.54184)$
Space group	Pbca	2Θ range for data collection/°	10.082 to 146.718
a/Å	15.5619(6)	Index ranges	$-18 \le h \le 15, -15 \le k \le 14, -21 \le 1 \le 12$
b/Å	12.6968(9)	Reflections collected	7752
-----------------------	------------	--	--
c/Å	17.5458(8)	Independent reflections	$\begin{array}{l} 3372 \; [R_{int} = 0.1569, \\ R_{sigma} = 0.1077] \end{array}$
$\alpha/^{\circ}$	90	Data/restraints/parameters	3372/0/229
β/°	90	Goodness-of-fit on F^2	1.122
$\gamma/^{\circ}$	90	Final R indexes [I>= 2σ (I)]	$R_1 = 0.1250, wR_2 = 0.2978$
Volume/Å ³	3466.8(3)	Final R indexes [all data]	$R_1 = 0.1724, wR_2 = 0.3596$
Z	8	Largest diff. peak/hole / e Å $^{\text{-}3}$	0.55/-0.53

Table 7. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3bc (CCDC 2174811).**

Atom	<i>x</i>	у	Z	U(eq)
01	5369(2)	1484(3)	6465.3(18)	52.9(9)
O2	4157(2)	982(3)	5895.9(19)	52.7(9)
O3	5615(2)	986(3)	4782.9(18)	50.6(8)
C1	7741(3)	4647(6)	5669(4)	79.6(18)
C2	7109(3)	3830(5)	5909(3)	57.8(13)
C3	7286(3)	3156(5)	6518(4)	68.6(16)
C4	6738(3)	2358(5)	6734(3)	66.2(15)
C5	5982(3)	2266(4)	6345(3)	50.1(11)
C6	5746(2)	2953(4)	5760(2)	40.6(9)
C7	6311(3)	3715(4)	5539(3)	48.1(10)
C8	4855(2)	2659(3)	5509(2)	37.0(9)
C9	4738(2)	1599(4)	5937(2)	43.5(10)
C10	4158(2)	3382(4)	5842(2)	42.5(10)
C11	4367(3)	4311(5)	6209(3)	58.2(13)
C12	3718(4)	4927(6)	6521(4)	84(2)
C13	2882(4)	4659(7)	6490(4)	93(2)
C14	2668(3)	3732(7)	6122(5)	86(2)
C15	3293(3)	3093(5)	5795(3)	60.7(14)
C16	4784(2)	2517(4)	4651(2)	37.8(9)
C17	4360(2)	3245(4)	4181(2)	43.2(10)
C18	4320(3)	3131(4)	3396(2)	48.6(11)
C19	3867(4)	3922(5)	2901(3)	62.5(14)
C20	4702(3)	2230(4)	3080(2)	53.7(12)
C21	5126(3)	1504(4)	3526(2)	52.2(11)
C22	5174(2)	1654(4)	4310(2)	43.4(10)

 U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{11} tensor.

Atom	U11	U22	U33	U23	U13	U12
01	39.8(15)	73(2)	45.9(15)	10.2(15)	-7.1(13)	3.0(15)
O2	39.7(15)	68(2)	51.1(17)	-2.4(15)	7.3(13)	-7.1(14)
O3	40.3(15)	65(2)	46.8(16)	-2.6(15)	3.1(13)	13.9(14)
C1	30(2)	109(5)	100(5)	-14(4)	10(3)	-13(3)
C2	24.1(18)	83(3)	67(3)	-16(3)	1.9(18)	1(2)
C3	29(2)	104(4)	74(3)	-7(3)	-12(2)	10(2)
C4	37(2)	95(4)	67(3)	9(3)	-17(2)	11(2)
C5	31.1(19)	75(3)	44(2)	-1(2)	-2.9(17)	7(2)
C6	24.3(17)	62(2)	35.0(17)	-5.5(17)	1.0(14)	8.4(16)
C7	27.9(17)	66(3)	50(2)	-8(2)	3.0(17)	3.5(18)
C8	20.3(15)	57(2)	33.5(17)	-1.3(16)	2.2(13)	6.1(15)
C9	27.7(17)	69(3)	34.0(17)	-1.3(18)	3.8(15)	6.8(18)
C10	26.2(18)	70(3)	31.0(16)	1.1(19)	3.8(14)	7.9(17)
C11	38(2)	84(3)	53(2)	-14(2)	4.0(19)	17(2)
C12	69(4)	103(5)	79(4)	-29(4)	14(3)	30(3)
C13	58(3)	142(6)	80(4)	-16(4)	21(3)	48(4)
C14	30(2)	134(6)	95(4)	-1(5)	15(3)	26(3)
C15	22.4(19)	97(4)	63(3)	-6(3)	5.9(18)	9(2)
C16	21.5(15)	59(2)	33.1(17)	-3.1(17)	3.7(13)	-1.3(15)
C17	29.5(17)	64(3)	35.9(18)	-0.1(18)	0.0(15)	5.1(17)
C18	36(2)	75(3)	34.1(19)	4.7(19)	0.7(16)	-3(2)
C19	55(3)	92(4)	40(2)	11(2)	-7(2)	8(3)
C20	51(2)	78(3)	32.7(18)	-6(2)	7.1(18)	-4(2)
C21	45(2)	70(3)	41(2)	-10(2)	10.0(18)	7(2)
C22	24.6(17)	64(3)	42(2)	-0.6(19)	7.4(15)	-1.9(16)

Table 8. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **3bc** (**CCDC 2174811**). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 9. Bond Lengths for 3bc (CCDC 2174811).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C5	1.393(6)	C8	C16	1.521(5)
01	C9	1.358(5)	C10	C11	1.383(8)
O2	C9	1.198(5)	C10	C15	1.399(6)
O3	C22	1.371(5)	C11	C12	1.390(7)
C1	C2	1.491(8)	C12	C13	1.345(11)
C2	C3	1.395(9)	C13	C14	1.384(11)
C2	C7	1.410(6)	C14	C15	1.391(7)
C3	C4	1.378(8)	C16	C17	1.404(6)
C4	C5	1.365(6)	C16	C22	1.387(6)
C5	C6	1.396(6)	C17	C18	1.386(6)
C6	C7	1.363(6)	C18	C19	1.504(7)
C6	C8	1.502(5)	C18	C20	1.404(7)
C8	C9	1.552(6)	C20	C21	1.378(7)
C8	C10	1.536(5)	C21	C22	1.390(6)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C9	O1	C5	108.4(3)	O2	C9	C8	128.8(4)
C3	C2	C1	120.8(5)	C11	C10	C8	121.4(4)
C3	C2	C7	117.6(5)	C11	C10	C15	118.6(4)
C7	C2	C1	121.6(6)	C15	C10	C8	120.1(4)
C4	C3	C2	122.7(4)	C10	C11	C12	119.5(5)
C5	C4	C3	117.3(5)	C13	C12	C11	123.0(7)
O1	C5	C6	112.1(4)	C12	C13	C14	117.8(5)
C4	C5	O1	125.2(5)	C13	C14	C15	121.3(5)
C4	C5	C6	122.7(5)	C14	C15	C10	119.7(6)
C5	C6	C8	107.6(4)	C17	C16	C8	122.5(4)
C7	C6	C5	118.9(4)	C22	C16	C8	119.3(4)
C7	C6	C8	133.4(4)	C22	C16	C17	118.2(4)
C6	C7	C2	120.7(5)	C18	C17	C16	122.4(4)
C6	C8	C9	100.5(3)	C17	C18	C19	121.7(4)
C6	C8	C10	113.1(3)	C17	C18	C20	117.3(4)
C6	C8	C16	112.8(3)	C20	C18	C19	121.0(4)
C10	C8	C9	104.6(3)	C21	C20	C18	121.6(4)
C16	C8	C9	111.5(3)	C20	C21	C22	119.7(4)
C16	C8	C10	113.4(3)	O3	C22	C16	116.5(4)
O1	C9	C8	109.8(4)	O3	C22	C21	122.7(4)
O2	C9	01	121.1(4)	C16	C22	C21	120.8(4)

Table 10. Bond Angles for 3bc (CCDC 2174811).

Table 11. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3bc (CCDC 2174811)**.

`	· ·			
Atom	x	у	Z	U(eq)
H3	5607	389	4604	76
H1A	7828	4606	5128	119
H1B	8278	4529	5926	119
H1C	7526	5332	5799	119
H3A	7794	3250	6788	82
H4	6877	1901	7129	79
H7	6167	4163	5139	58
H11	4938	4523	6246	70
H12	3868	5552	6763	101
H13	2462	5083	6709	112
H14	2094	3533	6092	104
H15	3136	2476	5545	73
H17	4096	3825	4404	52
H19A	3410	4245	3184	94
H19B	3635	3574	2461	94
H19C	4268	4453	2741	94
H20	4668	2120	2557	64
H21	5380	916	3304	63

Fig. 4. Crystal structure of **3bd** (**CCDC 2174815**); Crystal Data for C₂₅H₂₂O₃ (*M* =370.42 g/mol): orthorhombic, space group Pbca (no. 61), *a* = 13.3483(3) Å, *b* = 14.7869(4) Å, *c* = 20.1111(10) Å, *V* = 3969.5(2) Å³, *Z* = 8, *T* = 293 K, μ(CuKα) = 0.640 mm⁻¹, *Dcalc* = 1.240 g/cm³, 10136 reflections measured (9.952° ≤ 2Θ ≤ 146.456°), 3869 unique ($R_{int} = 0.0579$, $R_{sigma} = 0.0456$) which were used in all calculations. The final R_1 was 0.0723 (I > 2σ(I)) and wR_2 was 0.2462 (all data).

Details:

```
1. Fixed Uiso
At 1.2 times of:
All C(H) groups, All C(H,H) groups
At 1.5 times of:
All C(H,H,H) groups
2.a Secondary CH2 refined with riding coordinates:
C23(H23A,H23B)
2.b Aromatic/amide H refined with riding coordinates:
C3(H3), C4(H4), C7(H7), C11(H11), C12(H12), C13(H13), C14(H14), C15(H15),
C17(H17), C19(H19), C20(H20), C24(H24)
2.c X=CH2 refined with riding coordinates:
C25(H25A,H25B)
2.d Idealised Me refined as rotating group:
C1(H1A,H1B,H1C), C22(H22A,H22B,H22C)
```

Table	12.	Crystal	data	and	structure refineme	nt foi	: 3 bd	l (C	CDC	2174	1815	5)
-------	-----	---------	------	-----	--------------------	--------	---------------	------	-----	------	------	----

Properties	values	Properties	values
Identification code	BD-20-18_1	$\rho_{calc}g/cm^3$	1.240
Empirical formula	C ₂₅ H ₂₂ O ₃	μ/mm^{-1}	0.640
Formula weight	370.42	F(000)	1568.0
Temperature/K	293	Crystal size/mm ³	1.0 imes 0.2 imes 0.07
Crystal system	orthorhombic	Radiation	$CuK\alpha \ (\lambda = 1.54184)$

Space group	Pbca	20 range for data collection/°	9.952 to 146.456
$a/\mathring{\Delta}$	13 3483(3)	Index ranges	$-16 \le h \le 14, -17 \le k$
a/ / Y	15.5+05(5)	index ranges	$\leq 17, -17 \leq l \leq 24$
b/Å	14.7869(4)	Reflections collected	10136
$c/\mathring{\Delta}$	20 1111(10)	Independent reflections	3869 [$R_{int} = 0.0579$,
C /1 X	20.1111(10)	independent reflections	$R_{sigma} = 0.0456$]
$\alpha/^{\circ}$	90	Data/restraints/parameters	3869/0/255
β/°	90	Goodness-of-fit on F ²	1.069
$n^{/\circ}$	90	Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0723, wR_2 =$
Y')0		0.1973
Volume/ $Å^3$	3969.5(2)	Final R indexes [all data]	$R_1 = 0.1042, wR_2 =$
V Orume/A	5707.3(2)	i mai it moexes [an data]	0.2462
Z	8	Largest diff. peak/hole / e Å ⁻³	0.21/-0.33

Table 13. Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **3bd (CCDC 2174815)**.

Atom	x	у	z	U(eq)
01	2322.6(11)	5017.9(12)	7329.9(13)	77.1(7)
O2	2435.9(15)	5155.5(14)	6232.0(14)	92.9(8)
O3	2666.0(13)	6949.1(11)	6939.8(13)	79.7(7)
C1	5097(3)	5932(2)	9331(2)	95(1)
C2	4342(2)	5668.9(16)	8816.8(18)	73.3(8)
C3	3396(2)	5359.1(18)	8988(2)	83.9(10)
C4	2681(2)	5114.7(19)	8521(2)	85.1(10)
C5	2946.5(17)	5198.3(14)	7868.1(18)	68.4(8)
C6	3889.2(15)	5482.8(13)	7670.9(16)	59.6(7)
C7	4584.8(18)	5722.9(15)	8145.5(16)	63.2(7)
C8	3931.8(15)	5479.5(14)	6922.5(16)	59.4(7)
C9	2823.6(19)	5235.6(15)	6758.6(19)	70.5(9)
C10	4556.1(16)	4700.8(14)	6630.5(16)	59.0(7)
C11	4597(2)	4577.5(18)	5946.4(19)	78.7(9)
C12	5131(2)	3863(2)	5671(2)	84.9(9)
C13	5627(2)	3265.0(18)	6076(2)	78.4(9)
C14	5594(2)	3378.2(17)	6747(2)	76.3(9)
C15	5065.9(15)	4097.2(16)	7028.3(17)	62.9(7)
C16	4252.6(16)	6406.5(14)	6653.8(15)	59.0(7)
C17	5232.8(16)	6562.4(15)	6456.0(16)	62.8(7)
C18	5569.1(19)	7412.1(16)	6265.6(16)	67.6(8)
C19	4886(2)	8111.4(16)	6268.6(17)	73.0(8)
C20	3906(2)	7985.1(15)	6470.9(17)	71.0(8)
C21	3593.0(18)	7137.3(15)	6683.0(16)	62.9(7)
C22	1953(2)	7652(2)	6996(2)	84.6(10)
C23	6654(2)	7562.0(19)	6076(2)	79.1(9)
C24	6869(3)	7403(5)	5389(3)	152(2)
C25	7270(4)	7855(7)	4952(4)	209(4)

 U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	U11	U22	U33	U23	U13	U12
01	42.7(8)	55.6(9)	133(2)	6.1(10)	-2.6(10)	-7.1(7)
O2	64.7(11)	73.9(12)	140(2)	-1.4(13)	-36.3(14)	-4.1(9)
O3	55.7(9)	46.6(9)	137(2)	8.3(10)	2.7(11)	7.5(7)
C1	107(2)	82(2)	96(3)	2.1(18)	-11(2)	8.6(18)
C2	75.6(15)	45.4(12)	99(3)	6.3(13)	8.0(17)	11.6(11)
C3	84.5(18)	60.7(15)	107(3)	8.0(16)	26(2)	17.1(14)
C4	62.1(14)	60.5(15)	133(3)	16.7(18)	29.3(19)	7.3(12)
C5	49.3(11)	40.5(11)	115(3)	7.5(13)	10.9(15)	-0.2(9)
C6	45.8(10)	35.5(9)	98(2)	5.3(11)	2.8(12)	0.1(8)
C7	55.1(11)	42.7(11)	92(2)	6.3(12)	0.8(13)	-0.7(9)
C8	42.6(9)	38.1(10)	97(2)	7.1(11)	-8.3(12)	-3.0(8)
C9	48.4(11)	44.0(11)	119(3)	2.9(14)	-13.9(16)	-1.6(9)
C10	45.1(9)	39.2(10)	93(2)	3.8(12)	-6.1(12)	-6.0(8)
C11	82.5(17)	53.6(14)	100(3)	4.2(15)	-12.5(18)	-0.5(12)
C12	88.4(18)	67.2(16)	99(3)	-10.3(17)	2.3(19)	-5.6(15)
C13	63.9(14)	55.4(14)	116(3)	-9.2(16)	3.1(18)	-2.7(11)
C14	59.0(12)	50.0(13)	120(3)	5.9(16)	-6.6(16)	7.5(10)
C15	48.4(10)	48.5(11)	92(2)	4.4(13)	-5.6(12)	1.9(9)
C16	50.2(10)	37.8(10)	89(2)	3.3(11)	-11.8(12)	-2.9(8)
C17	50.9(10)	42.9(11)	95(2)	3.0(12)	-6.3(13)	-2.1(9)
C18	63.0(13)	49.9(12)	90(2)	3.0(12)	-4.7(13)	-13.4(10)
C19	83.7(16)	41.5(12)	94(2)	7.5(12)	-0.3(16)	-11.5(11)
C20	75.8(15)	39.2(11)	98(2)	5.9(12)	-3.5(16)	5.6(10)
C21	54.4(11)	41.9(10)	93(2)	3.1(12)	-5.8(13)	-1.4(9)
C22	68.4(14)	66.8(16)	118(3)	-1.4(17)	3.8(17)	18.1(13)
C23	69.7(14)	65.0(15)	103(3)	8.1(16)	5.4(17)	-19.0(12)
C24	69.7(19)	261(7)	126(4)	-21(5)	5(3)	-22(3)
C25	86(3)	415(13)	126(5)	53(6)	7(3)	-2(5)

Table 14. Anisotropic Displacement Parameters ($\mathring{A}^2 \times 10^3$) for **3bd** (**CCDC 2174815**). The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Table 15. Bond Lengths for 3bd (CCDC 2174815).

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C5	1.391(4)	C10	C11	1.389(4)
01	C9	1.368(4)	C10	C15	1.378(4)
O2	C9	1.185(4)	C11	C12	1.389(4)
O3	C21	1.369(3)	C12	C13	1.372(5)
O3	C22	1.414(3)	C13	C14	1.361(5)
C1	C2	1.495(5)	C14	C15	1.395(4)
C2	C3	1.387(4)	C16	C17	1.387(3)
C2	C7	1.391(4)	C16	C21	1.395(3)
C3	C4	1.388(5)	C17	C18	1.388(3)
C4	C5	1.365(5)	C18	C19	1.378(4)
C5	C6	1.385(3)	C18	C23	1.515(4)
C6	C7	1.378(4)	C19	C20	1.383(4)
C6	C8	1.506(4)	C20	C21	1.388(3)
C8	C9	1.558(3)	C23	C24	1.429(7)
C8	C10	1.538(3)	C24	C25	1.227(8)
C8	C16	1.534(3)			

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C9	O1	C5	108.4(2)	C11	C10	C8	119.8(2)
C21	O3	C22	119.3(2)	C15	C10	C8	122.1(3)
C3	C2	C1	121.8(3)	C15	C10	C11	118.1(2)
C3	C2	C7	118.2(3)	C10	C11	C12	121.0(3)
C7	C2	C1	120.0(3)	C13	C12	C11	120.1(3)
C2	C3	C4	122.9(4)	C14	C13	C12	119.5(3)
C5	C4	C3	116.7(3)	C13	C14	C15	120.8(3)
C4	C5	O1	125.1(2)	C10	C15	C14	120.5(3)
C4	C5	C6	122.6(3)	C17	C16	C8	120.85(19)
C6	C5	O1	112.3(3)	C17	C16	C21	118.6(2)
C5	C6	C8	108.6(2)	C21	C16	C8	120.1(2)
C7	C6	C5	119.5(3)	C16	C17	C18	122.3(2)
C7	C6	C8	131.9(2)	C17	C18	C23	120.8(2)
C6	C7	C2	120.0(2)	C19	C18	C17	117.6(2)
C6	C8	C9	100.2(2)	C19	C18	C23	121.6(2)
C6	C8	C10	113.9(2)	C18	C19	C20	121.7(2)
C6	C8	C16	111.1(2)	C19	C20	C21	119.8(2)
C10	C8	C9	105.10(19)	O3	C21	C16	115.38(19)
C16	C8	C9	113.41(19)	O3	C21	C20	124.8(2)
C16	C8	C10	112.5(2)	C20	C21	C16	119.8(2)
O1	C9	C8	109.9(3)	C24	C23	C18	114.3(3)
O2	C9	O1	120.9(2)	C25	C24	C23	133.6(8)
O2	C9	C8	128.8(3)				

Table 16. Bond Angles for 3bd (CCDC 2174815).

Table 17. Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for **3bd (CCDC 2174815).**

Atom	x	у	Z.	U(eq)
H1A	5597	5469	9366	143
H1B	4769	6006	9753	143
H1C	5408	6492	9205	143
H3	3234	5313	9437	101
H4	2052	4904	8646	102
H7	5217	5921	8017	76
H11	4262	4979	5668	94
H12	5153	3791	5212	102
H13	5984	2786	5893	94
H14	5927	2971	7022	92
H15	5058	4170	7488	76
H17	5681	6081	6451	75
H19	5090	8683	6131	88
H20	3458	8467	6465	85
H22A	1810	7893	6563	127
H22B	2215	8122	7275	127
H22C	1348	7417	7189	127
H23A	6836	8180	6183	95
H23B	7071	7166	6343	95
H24	6660	6837	5243	183
H25A	7505	8433	5048	251
H25B	7338	7621	4526	251

Fig. 5. Crystal structure of 5f (CCDC 2174816)

 Table 18. Crystal data and structure refinement for 5f (CCDC 2174816)

Properties	values	Properties	values	
CCDC number	2174816	F(000)	568	
Empirical formula	$C_{17}H_{16}O_3$	Crystal size [mm ³]	0.200×0.150×0.100	
Formula weight	268.30	Crystal colour	colourless	
Temperature [K]	nperature [K] 298(2) Crystal shape		block	
Crystal system	monoclinic	Radiation Cu K		
			(λ=1.54184 Å)	
Space group	$P2_{1}/c(14)$	20 range [°]	10.21 to 154.20	
(number)			(0.79 Å)	
a [Å]	8.60280(10)	Index ranges	$-10 \le h \le 9$	
			$-12 \le k \le 12$	
			$-20 \le l \le 21$	
<i>b</i> [Å]	10.12580(10)	Reflections collected	17553	
<i>c</i> [Å]	17.0368(3)	Independent reflections	3016	
			$R_{\rm int} = 0.0384$	
			$R_{ m sigma} = 0.0247$	
α [Å]	90	Completeness to	99.7 %	
		$\theta = 67.684^{\circ}$		
β [Å]	100.558(2)	Data / Restraints / Parameters	3016/0/184	
γ [Å]	90	Goodness-of-fit on F^2	1.137	
Volume [Å ³]	1458.95(4)	Final <i>R</i> indexes	$R_1 = 0.0448$	
		[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1300$	
Ζ	4	Final <i>R</i> indexes	$R_1 = 0.0613$	
		[all data]	$wR_2 = 0.1509$	
$\rho_{\rm calc} [{\rm g/cm^3}]$	1.221	Largest peak/hole [eÅ ³]	0.27/-0.20	
$\mu [{ m mm}^{-1}]$	0.672	Extinction coefficient	0.0046(7)	

Atom	r	v	7	Um
<u> </u>	0.678/9(16)	9 0.41381(13)	0.62805(8)	0.0438(3)
C^{2}	0.07049(10) 0.70199(15)	0.29480(13)	0.57869(8)	0.0438(3)
C2 C3	0.70199(15) 0.82093(16)	0.29400(13) 0.21825(14)	0.57009(0)	0.0430(3) 0.0479(3)
C4	0.82073(10)	0.21023(14) 0.10152(15)	0.02000(0) 0.59249(11)	0.0477(3)
С4 Н4	0.0000(2)	0.051302	0.57247(11)	0.000 (+)
114 C5	0.930011 0.7024(2)	0.051392 0.06257(15)	0.021093 0.51702(11)	0.073
С5 H5	0.7924(2)	0.00237(13)	0.31792(11)	0.0029(4)
	0.623098	-0.013384	0.490300	0.075
C0 C7	0.0092(2) 0.62471(18)	0.13304(10) 0.25350(15)	0.47323(9) 0.50468(8)	0.0576(4)
U7	0.02471(18) 0.542653	0.20309(13)	0.30408(8)	0.0510(4)
117 C8	0.543055	0.304310	0.473919 0.20255(12)	0.002
	0.3630(3)	0.0632(2) 0.159465	0.39333(12)	0.0652(0)
ПОА	0.557528	0.136403	0.301000	0.128
	0.500579	0.023032	0.401744	0.128
	0.033933	0.039/00	0.300029	0.128
C9	0.81073(10)	0.39079(13)	0.70234(9)	0.0307(4)
C10	0.52058(15)	0.41707(13)	0.03037(8)	0.0438(3)
	0.4615(2)	0.53546(16)	0.67802(10)	0.0589(4)
HII	0.515758	0.61358/	0.6/30/0	0.071
C12	0.3209(2)	0.5379(2)	0.70703(12)	0.0758(5)
H12	0.280285	0.618333	0.720275	0.091
C13	0.2415(2)	0.4240(2)	0.71640(12)	0.0749(6)
HI3	0.148302	0.426633	0.736710	0.090
C14	0.2998(2)	0.3058(2)	0.69573(12)	0.0753(5)
H14	0.246052	0.227882	0.701911	0.090
C15	0.43912(19)	0.30193(17)	0.66556(11)	0.0612(4)
H15	0.477915	0.221414	0.651293	0.073
C16	0.8442(3)	0.5538(2)	0.56401(15)	0.0825(6)
H16A	0.838537	0.505497	0.514391	0.099
H16B	0.931529	0.518611	0.602494	0.099
C17	0.8703(4)	0.6931(2)	0.5508(2)	0.1203(10)
H17A	0.783990	0.727295	0.512366	0.181
H17B	0.967181	0.703821	0.531022	0.181
H17C	0.877167	0.740281	0.600159	0.181
01	0.88507(12)	0.27284(11)	0.69552(6)	0.0558(3)
O2	0.84904(14)	0.46016(14)	0.75863(8)	0.0725(4)
O3	0.69938(13)	0.53767(10)	0.59328(7)	0.0570(3)

Table 19. Atomic coordinates and U_{eq} [Å²] for **5f** (**CCDC 2174816**)

 U_{eq} is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Atom-Atom-Atom	Length [Å]Angle [°]	Atom-Atom-Atom	Length [Å]Angle [°]
C1–O3	1.4125(16)	C10C1C9	107.78(11)
C1–C2	1.5042(18)	C3C2C7	119.69(13)
C1-C10	1.5246(18)	C3-C2-C1	108.80(12)
C1–C9	1.5567(19)	C7-C2-C1	131.49(12)
C2–C3	1.3768(19)	C4–C3–C2	123.16(15)
C2–C7	1.378(2)	C4-C3-O1	124.34(13)
C3–C4	1.372(2)	C2C3O1	112.50(13)
C3–O1	1.4033(18)	C3-C4-C5	116.36(14)
C4–C5	1.379(3)	C4C5C6	122.85(14)
C5–C6	1.395(2)	C5-C6-C7	118.49(15)
C6–C7	1.396(2)	C5-C6-C8	120.92(16)
C6–C8	1.510(3)	C7–C6–C8	120.57(16)
C9–O2	1.1856(18)	C2C7C6	119.43(14)
C9–O1	1.3696(19)	02	121.36(14)
C10-C11	1.377(2)	O2C9C1	128.48(15)
C10-C15	1.383(2)	01–C9–C1	110.16(12)
C11-C12	1.388(2)	C11-C10-C15	119.04(14)
C12-C13	1.365(3)	C11-C10-C1	119.79(12)
C13-C14	1.368(3)	C15-C10-C1	121.07(12)
C14-C15	1.388(2)	C10-C11-C12	119.86(16)
C16-O3	1.433(2)	C13-C12-C11	120.92(17)
C16-C17	1.453(3)	C12-C13-C14	119.61(16)
O3-C1-C2	115.88(11)	C13-C14-C15	120.12(17)
O3-C1-C10	107.68(10)	C10-C15-C14	120.44(16)
C2C1C10	114.48(11)	O3-C16-C17	109.50(18)
O3-C1-C9	110.10(11)	C9–O1–C3	107.95(11)
C2C1C9	100.46(11)	C1-O3-C16	115.61(12)

Table 20. Bond lengths and angles for 5f (CCDC 2174816).

References.

- [1] Rigaku Oxford Diffraction, CrysAlisPro Software System, Version 1.171, Rigaku Corporation, Oxford, UK, (2015).
- [2] G. M. Sheldrick, *Acta Cryst.***2015**, *A71*, 3–8, doi:10.1107/S2053273314026370.
- [3] G. M. Sheldrick, *Acta Cryst.***2015**, *C71*, 3–8, doi:10.1107/S2053229614024218.
- [4] L. J. Farrugia, WinGX and ORTEP for Windows: an update. J. Appl. Cryst. 45, 849-854(2012).