Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1	Supporting information
2	A mixed catalyst prepared by mechanically milling VW/TiO ₂ and low content of
3	Pt/Al ₂ O ₃ for SCO of high-concentration NH ₃
4	Yu Gao ^a , Zhitao Han ^{a,b*} , Shaosi Cheng ^a , Duo Xu ^a , Xinxiang Pan ^{a,b,c}
5	a. Marine Engineering College, Dalian Maritime University, 116026, Dalian 116024,
6	China
7	b. Liaoning Research Center for Marine Internal Combustion Engine Energy-Saving,
8	Dalian 116024, China
9	c. School of Electronic and Information Technology, Guangdong Ocean University,
10	Zhanjiang, Guangdong 524088, China
11	Corresponding author is Zhitao Han (E-mail: hanzt@dlmu.edu.cn, Tel.: +86-138 9869
12	2035).
13	

14 Table S1. Surface areas and average pore sizes of Pt/Al_2O_3 , VW/TiO_2 and $Pt_{0.01}@VW$

15

catal	lysts.
-------	--------

Sample	Sample $S_{BET}(m^2/g)$		Pore diameter (nm)
Pt/Al ₂ O ₃	154.78	0.79	18.53
VW/TiO ₂	59.95	0.37	22.67
Pt _{0.01} @VW	59.06	0.31	19.37

16

Table S2. XPS results of Pt/Al_2O_3 and VW/TiO_2 catalysts

Sample	Pt (%)	V (%)	W (%)	O (%)	Al (%)	Ti (%)	V ⁴⁺ 4+ 5+ V/V+V (%)	$O_{\alpha}/O_{\alpha}+ O_{\beta}$ (%)	$\begin{array}{c} O_{\beta}/O_{\alpha}+\\ O_{\beta}\\ (\%)\end{array}$
Pt/Al ₂ O ₃	1.36	-	-	60.65	37.99	-	-	15.58	84.42
VW/TiO ₂	-	0.89	3.73	65.58	-	29.80	64.20	12.04	87.96

19 Table S3. Comparison of NH_3 conversion and N_2 selectivity of catalysts reported in

Catalyst	Preparation method	Reaction conditions	T ₁₀₀ (°C)	N_2 selectivity at T_{100} (%)	Ref.
Pt _{0.01} @VW (0.01 wt.% Pt)	Impregnation and ball mill mixing	$[NH_3] = 5000 \text{ ppm},$ $[O_2] = 10 \text{ vol. }\%,$ $N_2 \text{ as balance gas}$ $GHSV = 75,000 \text{ h}^{-1}$	300	84.3%	This work
Pt/Al ₂ O ₃ (0.46% wt.% Pt)	Impregnation	$[NH_3] = 500 \text{ ppm},$ $[O_2] = 5 \text{ vol. }\%, N_2$ as balance gas $GHSV = 66,000 \text{ h}^{-1}$	250	50	1
Pt/TiO ₂ (0.1 wt.% Pt)	Wet impregnation	$[NH_3] = 2000 \text{ ppm},$ $[O_2] = 8 \text{ vol. }\%, N_2$ as balance gas $GHSV = 60,000 \text{ h}^{-1}$	275	48	2
Pt/CeZrO ₂ (1 wt.% Pt)	Impregnation	$[NH_3] = 200 \text{ ppm},$ $[O_2] = 8 \text{ vol. } \%, N_2$ as balance gas GHSV = 100,000 h^{-1}	330	42	3
PtCu/ZSM-5 (1.5 wt.% Pt)	Impregnation	$[NH_3] = 180 \text{ ppm},$ $[O_2] = 8 \text{ vol. }\%, N_2$ as balance gas GHSV = 100,000 h^{-1}	275	72	4
Pt/V/TiO ₂ (0.1 wt.% Pt)	Wet impregnation	$[NH_3] = 200 \text{ ppm},$ $[O_2] = 8 \text{ vol. }\%, N_2$ as balance gas $GHSV = 60,000 \text{ h}^{-1}$	250	50	5
Pt-WO ₃ /ZrO ₂ (1.5 wt.% Pt)	Co-impregnation	$[NH_3] = 180 \text{ ppm},$ $[O_2] = 8 \text{ vol. } \%, N_2$ as balance gas GHSV = 100,000 h^{-1}	300	58	6
Ag/nano-Al ₂ O ₃	Impregnation	$[NH_3] = 500 \text{ ppm},$ $[O_2] = 10 \text{ vol. }\%, N_2$ as balance gas $GHSV = 28,000 \text{ h}^{-1}$	140	71	7

literature	and	this	work.
------------	-----	------	-------

18

Ag/SiO ₂ -TiO ₂ (10 wt.% Ag)	Impregnation	$[NH_3] = 500 \text{ ppm},$ $[O_2] = 10 \text{ vol. }\%, N_2$ as balance gas $GHSV = 28,000 \text{ h}^{-1}$	200	63	8
Ag/ZSM-5	Rotary evaporator	$[NH_3] = 1000 \text{ ppm},$ $[O_2] = 10 \text{ vol. }\%, N_2$ as balance gas $GHSV = 35,000 \text{ h}^{-1}$	135	75	9
Ag/Al_2O_3 (H ₂ reduced)	Incipient wet impregnation	$[NH_3] = 500 \text{ ppm},$ $[O_2] = 10 \text{ vol. }\%, \text{ Ar}$ as balance gas $GHSV = 28,000 \text{ h}^{-1}$	180	83	10
CuO/Al ₂ O ₃ (10 wt.% Cu)	Wet impregnation	$[NH_3] = 1000 \text{ ppm},$ $[O_2] = 10 \text{ vol. }\%, N_2$ as balance gas $GHSV = 50,000 \text{ h}^{-1}$	350	93	11
$CuO-Fe_2O_3$ (molar Cu:Fe = 1:1)	Sol-gel	$[NH_3] = 800 \text{ ppm},$ $[O_2] = 3 \text{ vol. }\%, N_2$ as balance gas $GHSV = 90,000 \text{ h}^{-1}$	250	91	12
V ₂ O ₅ /CeO ₂ /TiO ₂ (10 wt.% Ce, 2 wt.% V)	Wet impregnation	$[NH_3] = 200 \text{ ppm},$ $[O_2] = 8 \text{ vol. }\%, N_2$ as balance gas $GHSV = 60,000 \text{ h}^{-1}$	300	90	13
Fe ₂ O ₃ -TiO ₂ (5 wt.% Fe)	One–step sol– gel	$[NH_3] = 1000 \text{ ppm},$ $[O_2] = 3 \text{ vol. }\%, N_2$ as balance gas GHSV = 200,000 h^{-1}	400	91	14
Mn ₂ O ₃	Thermal decomposition	$[NH_3] = 500 \text{ ppm},$ $[O_2] = 3 \text{ vol. }\%, \text{ He}$ as balance $GHSV = 20,000 \text{ h}^{-1}$	210	60	15
MnO ₂	Pelletized at high pressure	$[NH_3] = 500 \text{ ppm},$ $[O_2] = 3 \text{ vol. }\%, N_2$ as balance $GHSV = 20,000 \text{ h}^{-1}$	200	65	16
Mn-ZSM-5 (1.03 wt.% Mn)	Ion exchange	$[NH_3] = 1000 \text{ ppm},$ $[O_2] = 2 \text{ vol. }\%, N_2$ as balance GHSV = 230,000 h^{-1}	350	77	17

-

Mixed catalysts	Pt mass fraction / %
Pt _{0.0025} @VW	0.0025
Pt _{0.005} @VW	0.005
Pt _{0.01} @VW	0.01
Pt _{0.02} @VW	0.02

Table S4Pt mass fraction of mixed catalysts.

1. The stability test of Pt_{0.01}@VW catalyst

A long time experiment at 300 °C was conducted to evaluate the stability of Pt_{0.01}@VW catalyst, and the results are shown in Fig. S1. It could be seen that during 20 hours of experiment, the NH₃ conversion and N₂ selectivity of Pt_{0.01}@VW catalyst were always maintained at ~100% and ~84%, respectively. It indicated that Pt_{0.01}@VW catalyst had good stability.

Fig. S1. NH_3 conversion efficiency and N_2 selectivity of $Pt_{0.01}$ @VW catalyst at 300

33

31

C.

Reaction conditions: $[NH_3]_{in} = 5,000 \text{ ppm}, [O_2]_{in} = 10 \text{ vol}\%, \text{ GHSV} = 75,000 \text{ h}^{-1}, N_2$ 34 35 as balance gas. 36 2. The process of in-situ DRIFTS experiments 37 38 2.1. In-situ DRIFTS experiments of reaction between O₂ and pre-adsorbed NH₃ 39 Firstly, catalysts were flushed by N₂ (100 mL/min) at 200 °C. Then catalysts were 40 pre-adsorbed with 5000 ppm of NH₃ (100 mL/min) for 30 min for saturation, and 41 purged with N₂ (100 mL/min) for 30 min to eliminate physically adsorbed NH₃. Next, 10 % O2 (100 mL/min) were introduced into the reactor, and the IR spectra were 42 recorded as a function of time. 43 2.2. In-situ DRIFTS experiments of reaction between NH₃ and pre-adsorbed O₂ 44 Firstly, catalysts were flushed by N₂ (100 mL/min) at 200 °C. Then catalysts were 45 pre-adsorbed with 10 % O₂ (100 mL/min) for 30 min for saturation, and purged with 46 N₂ (100 mL/min) for 30 min to eliminate physically adsorbed O₂. Next, 5000 ppm 47 NH₃ (100 mL/min) were introduced into the reactor. Then, the IR spectra were 48 recorded as a function of time. 49 50 2.3. In-situ DRIFTS experiments of reaction between NH_3 and O_2 Firstly, catalysts were flushed by N₂ (100 mL/min) at 200 °C. Then, 5000 ppm NH₃ 51 (100 mL/min) were introduced into the reactor. Then, the IR spectra were recorded as 52 a function of time. 53 3. The results of in-situ DRIFTS experiment of reaction between NH₃ and O₂ 54 In-situ DRIFTS experiments in which NH₃ and O₂ were simultaneously introduced 55 into reaction cell were carried out, and the results were shown in Fig. S2. As shown in 56 Fig. R2(a), after the introduction of NH₃ and O₂, several IR bands appeared in the 57

spectrum. With the increase of reaction time, the intensities of the bands which could

be assigned to coordinated NH₃ on Lewis acid sites (3356, 3332 cm⁻¹) decreased 59 slightly, while coordinated NH₃ on Lewis acid sites (1394 cm⁻¹), NH₄⁺ species on 60 Brønsted acid sites (1692, 1459 cm⁻¹), bridging nitrate species (1625,1257 cm⁻¹), 61 monodentate nitrate species (1580, 1486 cm⁻¹) and -NH₂ species (1532 cm⁻¹) 62 increased.¹⁰⁻¹⁵ It indicated that coordinated NH3 on Lewis acid sites was the 63 intermediate in reaction between O₂ and NH₃ on Pt/Al₂O₃ catalyst surface. Similarly, 64 it could be observed from Fig. S2 (b) that NH_4^+ species on Brønsted acid sites (1430, 65 1469 cm⁻¹) were involved in reaction of O₂ and NH₃ over VW/TiO₂ catalyst.^{15,16} In the 66 same way, Fig. S2(c) showed that NH_4^+ species on Brønsted acid sites (1436, cm⁻¹) 67 and -OH species (1626 cm⁻¹) could participate the NH₃ oxidation reaction over 68 Pt_{0.01}@VW catalyst.¹⁷ 69

77 **References:**

- [1] S. Shrestha, M.P. Harold, K. Kamasamudram and A. Yezerets, *Catal. Today*,
 2014, 231, 105-115.
- [2] G.J. Kim, D.W. Kwon, J.H. Shin, K.W. Kim and H.S. Chang, *Environ. Technol.*2019, 40, 2588-2600.
- M. Sun, J. Liu, C. Song, Y. Ogata, H. Rao, X. Zhao, H. Xu and Y. Chen, ACS
 Appl. Mater. Interfaces, 2019, **11**, 23102-23111.
- [4] M. Sun, S. Wang, Y. Li, Q. Wang, H. Xu and Y. Chen, J. *Taiwan Inst. Chem. Eng.*,
 2017, 78, 401-408.
- 86 [5] G. J. Kim, D. W. Kwon, J. H. Shin, K. W. Kim and S. C. Hong, *Environ. Technol.*,
 87 2019, 40, 2588-2600.
- 88 [6] M. Sun, S. Wang, Y. Li, H. Xu and Y. Chen, *Appl. Surf. Sci.*, 2017, 402, 323-329.
- 89 [7] F. Wang, J. Ma, G. He, M. Chen, C. Zhang and H. He, *ACS Catal.*, 2018, 8,
 90 2670-2682.
- 91 [8] F. Wang, J. Ma, G. He, M. Chen, S. Wang, C. Zhang and H. He, *Ind. Eng. Chem.*92 *Res.*, 2018, 57, 11903-11910
- 93 [9] Z. Wang, Q. Sun, D. Wang, Z. Hong, Z. Qu and X. Li, *Sep. Purif. Technol.*, 2019,
 94 **209**, 1016-1026.
- [10] F. Wang, G. He, B. Zhang, M. Chen, X. Chen, C. Zhang and H. He, *ACS Catal.*,
 2019, 9, 1437-1445.
- 97 [11] L. Gang, J.V. Grondelle, B.G. Anderson and R.A.V. Santen, *J. Catal.*, 1999, 186,
 98 100-109.
- 99 [12] Q. Zhang, H. Wang, P. Ning, Z. Song, X. Liu and Y. Duan, *Appl. Surf. Sci.*, 2017,
 100 419, 733-743.
- 101 [13] S.M. Lee and S.C. Hong, *Appl. Catal. B*, 2015, **163**, 30-39.

- 102 [14] R.Q. Long and R.T. Yang, J. Catal., 2002, **207**, 158-165.
- 103 [15] J.Y. Lee, S.B. Kim and S.C. Hong, *Chemosphere*, 2003, **50**, 1115-1122.
- 104 [16] Z. Qu, R. Fan, Z. Wang, H. Wang and L. Miao, *Appl. Surf. Sci.* 2015, 351,
 105 573-579.
- 106 [17] R.Q. Long and R.T. Yang, *ChCom*, 2000, 1651-1652.