Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry 2022

FeOOH activating resorcinol-formaldehyde resin nanospheres for

the photo-Fenton degradation of organic pollutants

Binyao Liu,^a Longgang Yan,^c Jinyu Wen,^a Xiaotian Liu,^a Feng Duan,^a Bi Jia,^b Xiaoyan Liu,^b Gaili Ke,^{a*} Huichao He,^{a, b*} and Yong Zhou^{d*}

^aState Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.

^bInstitute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology. Chongqing 401331, P. R. China.

^cInstitute of Applied Electronic, China Academy of Engineering Physics, Mianyang 621010, China.

^dEcomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 211102, China.

Keywords: Resorcinol-formaldehyde resin; FeOOH; Photo-Fenton; Hydrogen peroxide; Organic degradation

Fig. S1 SEM image of the pristine RFS nanospheres.

Fig. S2 Degradation rate of RhB with different catalysts in dark condition. Experimental conditions: 0.5 g L^{-1} of photocatalysts, 15 ppm of RhB solution.

Fig. S3 UV-vis absorbance spectral and photographs changes of RhB after different irradiation time with 6FeOOH/RFS composite. Experimental conditions: 0.5 g L⁻¹ of photocatalysts, 15 ppm of RhB solution, visible light irradiation($\lambda > 420$ nm).

Fig. S4 Zero-order kinetics curves of the degradation of RhB by different photocatalysts.

Fig. S5 The degradation rate of RhB with different concentrations by 6FeOOH/RFS composite. Experimental conditions: 0.5 g L⁻¹ of photocatalysts, visible light irradiation($\lambda > 420$ nm).

Fig. S6 Degradation rate of DMP with different catalysts. Experimental conditions: 10 ppm of DMP solution, 1 g L⁻¹ of photocatalysts, visible light irradiation ($\lambda > 420$ nm).

Fig. S7 (a to f) The original HPLC data of **Fig. 4f** (HPLC chromatograms of the degradation of DMP by 6FeOOH/RFS composite after different reaction times).

Fig. S8 Photocatalytic production H_2O_2 of the (a) RFS nanospheres and (b) 6FeOOH/RFS composite after four cycling runs. Experimental conditions: 20 mg of catalysts, 40 mL of H_2O , visible light irradiation ($\lambda > 420$ nm).

Fig. S9 (a) XRD pattern and (b) FTIR spectrum of the 6FeOOH/RFS composite before and after four cycles of RhB degradation.

Fig. S10 (a) Survey XPS spectrum, high resolution (b) C1s, (c) O1s and (d) Fe2p XPS spectra of 6FeOOH/RFS composite after four cycles of RhB degradation.

Fig. S11 Cyclic voltammogram of (a) RFS and (b) FeOOH in 0.1 M Na₂SO₄ solution (pH 6.8) before and after AM 1.5G irradiation

Samples	C [atom%]	O [atom%]	Fe [<i>atom%</i>]
Before reaction	62.68	30.17	7.15
After four cycles	63.82	29.74	6.44

Table S1. The atomic ratios of the 6FeOOH/RFS composite before and after four

 cycles of RhB degradation according to the XPS detection