FeOOH activating resorcinol-formaldehyde resin nanospheres for the photo-Fenton degradation of organic pollutants

Binyao Liu,a Longgang Yan,c Jinyu Wen,a Xiaotian Liu,a Feng Duan,a Bi Jia,b Xiaoyan Liu,b Gaili Ke,a,* Huichao He,\textsuperscript{a,b,*} and Yong Zhoud,*

aState Key Laboratory of Environmental Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
bInstitute of Environmental Energy Materials and Intelligent Devices, School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331, P. R. China.
cInstitute of Applied Electronic, China Academy of Engineering Physics, Mianyang 621010, China.
dEcomaterials and Renewable Energy Research Center, School of Physics, Nanjing University, Nanjing 211102, China.

Keywords: Resorcinol-formaldehyde resin; FeOOH; Photo-Fenton; Hydrogen peroxide; Organic degradation
Fig. S1 SEM image of the pristine RFS nanospheres.
Fig. S2 Degradation rate of RhB with different catalysts in dark condition.

Experimental conditions: 0.5 g L\(^{-1}\) of photocatalysts, 15 ppm of RhB solution.
Fig. S3 UV-vis absorbance spectral and photographs changes of RhB after different irradiation time with 6FeOOH/RFS composite. Experimental conditions: 0.5 g L⁻¹ of photocatalysts, 15 ppm of RhB solution, visible light irradiation (λ > 420 nm).
Fig. S4 Zero-order kinetics curves of the degradation of RhB by different photocatalysts.
Fig. S5 The degradation rate of RhB with different concentrations by 6FeOOH/RFS composite. Experimental conditions: 0.5 g L$^{-1}$ of photocatalysts, visible light irradiation ($\lambda > 420$ nm).
Fig. S6 Degradation rate of DMP with different catalysts. Experimental conditions: 10 ppm of DMP solution, 1 g L\(^{-1}\) of photocatalysts, visible light irradiation (\(\lambda > 420\) nm).
Fig. S7 (a to f) The original HPLC data of Fig. 4f (HPLC chromatograms of the degradation of DMP by 6FeOOH/RFS composite after different reaction times).
Fig. S8 Photocatalytic production of H_2O_2 of the (a) RFS nanospheres and (b) 6FeOOH/RFS composite after four cycling runs. Experimental conditions: 20 mg of catalysts, 40 mL of H_2O, visible light irradiation ($\lambda > 420$ nm).
Fig. S9 (a) XRD pattern and (b) FTIR spectrum of the 6FeOOH/RFS composite before and after four cycles of RhB degradation.
Fig. S10 (a) Survey XPS spectrum, high resolution (b) C1s, (c) O1s and (d) Fe2p XPS spectra of 6FeOOH/RFS composite after four cycles of RhB degradation.
Fig. S11 Cyclic voltammogram of (a) RFS and (b) FeOOH in 0.1 M Na$_2$SO$_4$ solution (pH 6.8) before and after AM 1.5G irradiation
Table S1. The atomic ratios of the 6FeOOH/RFS composite before and after four cycles of RhB degradation according to the XPS detection

<table>
<thead>
<tr>
<th>Samples</th>
<th>C [atom%]</th>
<th>O [atom%]</th>
<th>Fe [atom%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before reaction</td>
<td>62.68</td>
<td>30.17</td>
<td>7.15</td>
</tr>
<tr>
<td>After four cycles</td>
<td>63.82</td>
<td>29.74</td>
<td>6.44</td>
</tr>
</tbody>
</table>