Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1	Supplementary files
2	Insight into the potential application of CuO_x/CeO_2 catalyst for NO removal by CO:
3	perspective from the morphology & crystal-plane of CeO_2
4	Yali Du ^{a,1} , Dong Lu ^{b,1} , Jiangning Liu ^b , Xiaodong Li ^a , Chaohui Wu ^b , Xu Wu ^{b,} *, Xia An
5	
6	^a College of Chemistry and Chemical Engineering, Jinzhong University, Jinzhong 030619, China.
7	^b College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan
8	030024, China.
9	
10	¹ These authors contributed equally to this work.
11	Corresponding Authors
12	* E-mail: wuxu@tyut.edu.cn (Xu Wu)

1 **1 Experimental section**

1.1 Details of catalytic performance evaluation 2

S_{BET} normalized reaction rates (rs, mol m⁻² s⁻¹) was calculated by the 3

following formula: 4

rs (mol m - 2 s - 1) =
$$\frac{\text{Cin} \times \text{F}}{\text{mcat} \times \text{SBET}} \times \ln(1 - \text{X})$$

Where C_{in} refers to the NO concentration (ppm) in the inlet gas, F (mol s⁻ 6 $^{1})$ is the flow rate, $m_{cat}\left(g\right)$ is the mass of catalyst, $S_{BET}\left(m^{2}\,g^{\text{-1}}\right)$ is the specific 7 surface area calculated via BET method, X is the NO conversion.

9

8

5

1.2 Calculation of turnover frequency (TOF) 10

TOF value, representing the turnover conversion of single active sites per 11 12 second, was calculated as following equation:

$$TOF = \frac{v \times a}{Vm \times n Cu - surf}$$

Where v is the flow rate of NO (m³ s⁻¹), V_m is the gas molar constant (m³ 14 mol⁻¹), a is the NO conversion at certain temperature (%), $n_{Cu-surf}$ is the 15 ¹⁶ mole number of active Cu atoms on the catalytic surface (mol). Notedly, the NO conversion was controlled below 20% within the whole 17 temperature range to avoid the heat transfer effect (The corresponding data 18 were displayed in Fig. S6 and Table S3). n_{Cu-surf} was calculated as following 19 20 equation:

$$n \operatorname{Cu} - \operatorname{surf} = \frac{\operatorname{NCu} - \operatorname{surf}}{\operatorname{NA}}$$

1 Where $N_{Cu-surf}$ is mole number of active Cu atoms on the catalytic surface 2 and N_A is the Avogadro constant (6.02×10²³ mol⁻¹). Then $N_{Cu-surf}$ was 3 calculated as following equation:

4
$$m_{catal} \times S_{surf} = S_{Cu-surf} + S_{Ce-surf} + S_{O-surf}$$

5 =
$$N_{Cu-surf} \times S_{Cu-single} + N_{Ce-surf} \times S_{Ce-single} + N_{O-surf} \times S_{O-single}$$

- 6 where $m_{catal}(g)$ is the mass of catalyst, $S_{surf}(m^2 g^{-1})$ is the surface area of 7 catalysts by BET method, $S_{Cu-single}(m^2)$, $S_{Ce-single}(m^2)$, and $S_{O-single}(m^2)$ are 8 surface area of single atoms, r (m) is the value of atomic radii.
- 9 The atomic radii employed for Cu, Ce and O are shown as follows:

10
$$r_{Cu} = 1.28 \times 10^{-10} \text{ m}, r_{Ce} = 1.83 \times 10^{-10} \text{ m}, r_{O} = 6.6 \times 10^{-10} \text{ m}$$

11 The relationship between N_{Cu-surf}, N_{Ce-surf}, N_{O-surf} was calculated based on
12 XPS and relevant values were listed in Table S3.

13 **1.3 normalized reaction rate**

NO+CO reaction on the catalyst is recognized as a firstorder reaction with
respect to NO. Assuming the diffusion to be limitation-free, the reaction
rate (r) can be calculated using NO conversion below 20% as

$$r = -\frac{F \times \alpha}{SMn - surf}$$

18 where F is the flow of gaseous molecules (mol s⁻¹), α is the fractional 19 conversion, and S_{Mn-surf} is the surface area of Mn atoms on the surfaces of 20 catalysts (m²). N_{Mn-surf} and S_{Mn-surf} were estimated from the BET and XPS 21 data as reported before¹.

1 1.4 Calculation of apparent activation energy (Ea)

2 The Arrhenius formula (k=A exp (Ea/RT)) was applied to calculate the
3 apparent activation energies (Ea) from the slope of the linear plot of ln(R)
4 versus 1000/T, and use it to analyze the difference in catalytic activity of
5 CuO_x/CeO₂-X catalysts. Ea and k were calculated by the following
6 equation:

$$k = -\frac{V}{w} \times \ln (1 - x)$$

$$k = -\frac{Ea}{RT} + \ln A$$
8

9 k is the reaction rate constant (mol $g^{-1} s^{-1}$), V is the total gas flow (mol 10 s^{-1}), w is the mass of catalyst (g), x is the NO conversion (%), Ea is the 11 apparent activation energy of catalyst (kJ mol⁻¹), R is the gas constant 12 (8.314 J mol⁻¹ K⁻¹), T is the reaction temperature (K) and A is the pre-13 exponential factor (mol $g^{-1} s^{-1}$).

1 2 Figure captions

- 2 Fig. S1 The N₂ selectivity (%) of (a) CuO_x/CeO_2 -H, (b) CuO_x/CeO_2 -T, (c)
- $3 \text{ CuO}_{x}/\text{CeO}_{2}\text{-C}$, (d) CuO_x/CeO₂-F at different GHSV.
- 4 Fig. S2 Resistance tests to $O_2 + H_2O + SO_2$ over CuO_x/CeO_2 -H catalysts at
- 5 270 °C.
- 6 **Fig. S3** XRD patterns of CeO_2 -X.
- 7 Fig. S4 SEM images of CuO_x/CeO₂-H(a), CuO_x/CeO₂-T(b), CuO_x/CeO₂-
- 8 C(c) and CuO_x/CeO₂-F(d).
- 9 Fig. S5 Raman spectra of CeO_2 -X.
- 10 Fig. S6 N₂ adsorption/desorption isotherms (a) and pore size distribution
- 11 (b) of CuO_x/CeO_2 -X catalysts.
- 12 Fig. S7 S_{BET} normalized reaction rates of CuO_x/CeO₂-X catalysts for
- 13 NO+CO reaction.
- 14 Fig. S8 In situ FTIR spectra of NO adsorption on sulfurized CuO_x/CeO₂-
- 15 X at 150 °C.
- 16 Fig. S9 NO conversion in NO+CO reaction over the catalysts. Reaction
- 17 conditions: [NO] = 350 ppm, [CO] = 700 ppm, GHSV=450,000 h⁻¹.
- 18

1 3 Table captions

- 2 Table S1 Catalytic performance of transition metal oxide Reported in the
- 3 Literature.
- 4 Table S2 The surface areas, pore diameter, pore volume and lattice.
- 5 Table S3 TOF parameter information of CuO_x/CeO₂-H, CuO_x/CeO₂-T,
- 6 CuO_x/CeO_2 -C(c) and CuO_x/CeO₂-F catalysts.
- 7

1 Figure:

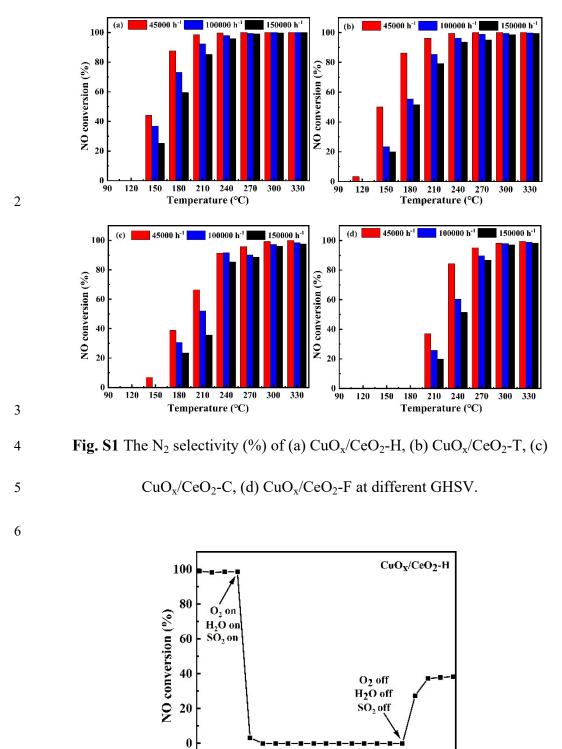


Fig. S2 Resistance tests to $O_2 + H_2O + SO_2$ over CuO_x/CeO_2 -H catalysts at 270 °C.

 Time (h)

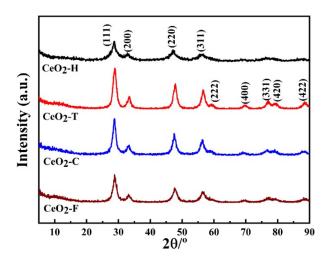


Fig S3 XRD patterns of CeO₂-X supports.

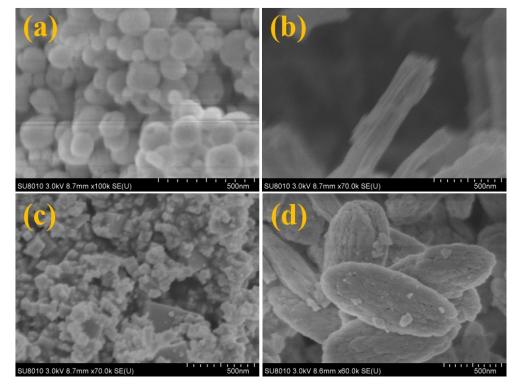
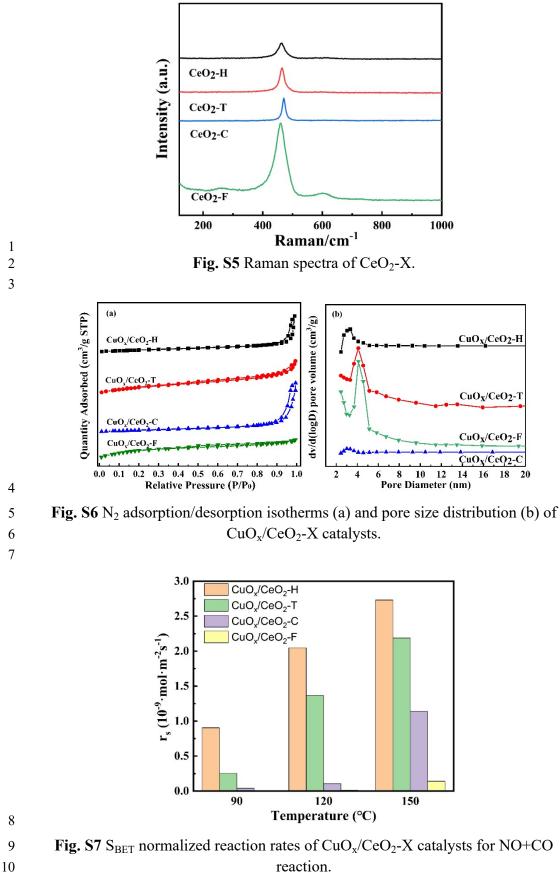



Fig. S4 SEM images of CuO_x/CeO_2 -H(a), CuO_x/CeO_2 -T(b), CuO_x/CeO_2 -C(c), and CuO_x/CeO_2 -F(d).

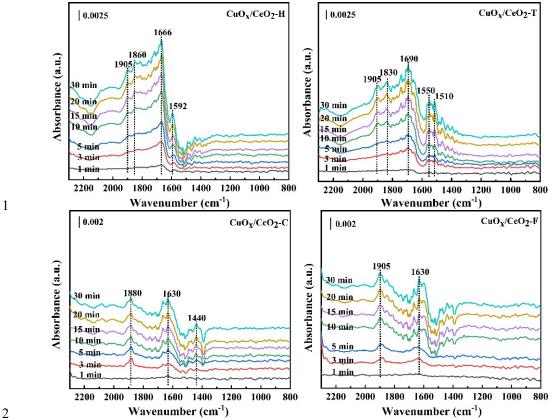
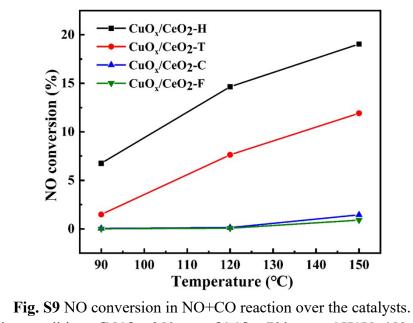



Fig. S8 In situ FTIR spectra of NO adsorption on sulfurized CuO_x/CeO₂-X at 150 °C. 3

As shown in Fig. S8, the peaks located at 1860, 1905 cm⁻¹ 4 (CuO_x/CeO_2-H) , 1830, 1905 cm⁻¹ (CuO_x/CeO₂-T), 1880 cm⁻¹ (CuO_x/CeO₂-5 C) and 1905 cm⁻¹ (CuO_x/CeO₂-F) are attributed to the gaseous NO/ weak 6 adsorption of NO on Cu⁺ or Cu²⁺. The bands located at 1666 cm⁻¹ 7 (CuO_x/CeO₂-H) and 1690 cm⁻¹ (CuO_x/CeO₂-T) correspond to bridged 8 nitrate. The peaks located at 1630 cm⁻¹ (CuO_x/CeO₂-C, CuO_x/CeO₂-F) can 9 be attributed to vibration modes of bridging bidentate nitrates ²⁻⁷. The bands 10 at 1592 cm⁻¹ (CuO_x/CeO₂-H) and 1550 cm⁻¹ (CuO_x/CeO₂-T) are coincided 11 with the chelating bidentate nitrates. While two bands at 1510 cm⁻¹ 12 (CuO_x/CeO_2-T) and 1440 cm⁻¹ (CuO_x/CeO_2-C) correspond to monodentate 13 14 nitrates and linear monodentate nitrites, respectively. From Fig. S6, it is

discovered that the peak strength of CuO_x/CeO₂-H and CuO_x/CeO₂-T is
slightly higher than that of CuO_x/CeO₂-C and CuO_x/CeO₂-F. The results
indicate that CuO_x/CeO₂-H and CuO_x/CeO₂-T can effectively alleviate the
competitive adsorption between NO and SO₂.

8 Reaction conditions: [NO] = 350 ppm, [CO] = 700 ppm, GHSV=450,000 h⁻¹.

9

6

1 Table:

	Reaction conditions						
Catalyst	Temperature range (°C)	GHSV or WHSV	NO (ppm)	CO (ppm)	T ₅₀	T _{max}	Ref.
MnO _x /TiO ₂	200	50,000h-1	400	400	\	200	8
Cu-Ce/CNT	140-260	12,600 h ⁻¹	250	5000	170	240	9
NiO-CeO ₂	100-300	9000 ml g^{-1} h^{-1}	2.5%	5%	135	175	10
Fe/TiO ₂	150-500	75,000 h ⁻¹	5000	5000	470	500	11
CuO/ZrO ₂	100-450	12,000 h ⁻¹	5%	10%	250	450	12
Cu/TiO ₂ - CeO ₂	150-400	24,000 ml g ⁻¹ h ⁻¹	5%	10%	220	310	13
CuO/CeO ₂	100-200	12,000 h ⁻¹	5%	10%	\	200	14
Cu/CeO ₂	100-325	15,000 ml g ⁻¹ h ⁻¹	5%	10%	135	300	15
CuO/CeO ₂	100-330	24,000 ml g ⁻¹ h ⁻¹	5%	10%	175	300	16
CuO/CeO ₂	100-400	12,000 ml g ⁻¹ h ⁻¹	5%	10%	150	400	17
Cu/CeO ₂	150-400	32,000 h ⁻¹	5000	5000	١	300	18
CuO/CeO ₂	50-300	36,000 ml g ⁻¹ h ⁻¹	1 vol%	1 vol%	105	200	19
CuO _x /CeO ₂ -H	90-330	45,000 h ⁻¹	350	700	102	270	This wo

2 Table S1 Catalytic performance of transition metal oxide Reported in the Literature.

3 GHSV means gaseous hourly space velocity (h⁻¹)

4 WHSV means weight hourly space velocity (ml g⁻¹ h⁻¹)

 T_{50} represents the temperature when the efficiency is 50%

- T_{max} represents the temperature when the efficiency is maximum

3	supports.						
	Catalyata	$S_{BET}{}^{a}$	Pore diameter ^b	Pore volume ^c	Lattice		
	Catalysts	(m^{2}/g)	(nm)	(cm^{3}/g)	parameter (Å)		
	CeO ₂ -H	29	11	0.1	5.46		
	CeO ₂ -T	85	7	0.1	5.37		
	CeO ₂ -C	20	26	0.1	5.38		
	CeO ₂ -F	125	4	0.1	5.41		

Table S2 The surface areas, pore diameter, pore volume and lattice parameter of

4 ^a Calculated by BET method ^{b,c} Calculated by BJH formula

```
6
```

Table S3 TOF parameter information of CuOx/CeO2-X catalysts.

C + 1 +	Mass (g)	$S_{BET} (m^2 \cdot g^{-1})$ –	Normalized ratio of each element			
Catalysts			Cu	Ce	Ο	
CuO _x /CeO ₂ -H	0.04	112	1.00	2.84	10.27	
CuO _x /CeO ₂ -T	0.04	84	1.00	3.50	11.37	
CuO _x /CeO ₂ -C	0.04	19	1.00	1.74	6.49	
CuO _x /CeO ₂ -F	0.04	92	1.00	2.66	10.65	

1 References

- C. Huang, Y. Zhu, X. Wang, X. Liu, J. Wang and T. Zhang, Journal of Catalysis, 2017, 347, 9 20.
- 4 2. X. Cheng, X. Zhang, D. Su, Z. Wang, J. Chang and C. Ma, Applied Catalysis B: Environmental,
 5 2018, 239, 485-501.
- 6 3. X. Yao, Y. Xiong, W. Zou, L. Zhang, S. Wu, X. Dong, F. Gao, Y. Deng, C. Tang, Z. Chen, L.
- 7 Dong and Y. Chen, Applied Catalysis B: Environmental, 2014, 144, 152-165.
- 8 4. X. Yao, F. Gao, Q. Yu, L. Qi, C. Tang, L. Dong and Y. Chen, Catalysis Science & Technology,9 2013, 3.
- J. Liu, X. Li, Q. Zhao, J. Ke, H. Xiao, X. Lv, S. Liu, M. Tadé and S. Wang, Applied Catalysis
 B: Environmental, 2017, 200, 297-308.
- L. Li, L. Zhang, K. Ma, W. Zou, Y. Cao, Y. Xiong, C. Tang and L. Dong, Applied Catalysis B:
 Environmental, 2017, 207, 366-375.
- 14 7. X. Yao, R. Zhao, L. Chen, J. Du, C. Tao, F. Yang and L. Dong, Applied Catalysis B: 15 Environmental, 2017, 208, 82-93.
- 16 8. T. Boningari, S. M. Pavani, P. R. Ettireddy, S. S. C. Chuang and P. G. Smirniotis, Molecular
- 17 Catalysis, 2018, 451, 33-42.
- 18 9. Z. Gholami and G. Luo, Industrial & Engineering Chemistry Research, 2018, 57, 8871-8883.
- C. Tang, B. Sun, J. Sun, X. Hong, Y. Deng, F. Gao and L. Dong, Catalysis Today, 2017, 281,
 575-582.
- 21 11. C. A. Sierra-Pereira and E. A. Urquieta-González, Fuel, 2014, 118, 137-147.
- 22 12. Q. Yu, X. Yao, H. Zhang, F. Gao and L. Dong, Applied Catalysis A: General, 2012, 423-424,
 23 42-51.
- 24 13. C. Deng, B. Li, L. Dong, F. Zhang, M. Fan, G. Jin, J. Gao, L. Gao, F. Zhang and X. Zhou,
 25 Physical Chemistry Chemical Physics : PCCP, 2015, 17.
- 26 14. G. Xianrui, L. Hao, L. Lichen, T. Changjin, G. Fei and D. Lin, Journal of Rare Earths, 2014,27 32, 139-145.
- 28 15. L. Liu, Z. Yao, Y. Deng, F. Gao, B. Liu and L. Dong, ChemCatChem, 2011, 3, 978-989.
- 29 16. X. Yao, Q. Yu, Z. Ji, Y. Lv, Y. Cao, C. Tang, F. Gao, L. Dong and Y. Chen, Applied Catalysis30 B: Environmental, 2013, 130-131, 293-304.
- 31 17. L. Liu, J. Cai, L. Qi, Q. Yu, K. Sun, B. Liu, F. Gao, L. Dong and Y. Chen, Journal of Molecular 22. Catalyzia A: Chamical 2010 227, 1, 11
- 32 Catalysis A: Chemical, 2010, 327, 1-11.
- 33 18. J. Chen, Y. Zhan, J. Zhu, C. Chen, X. Lin and Q. Zheng, Applied Catalysis A: General, 2010,
 34 377, 121-127.
- 35 19. Q. Shi, Y. Wang, S. Guo, Z.-K. Han, N. Ta, G. Li, Baiker and Alfons, Catalysis Science &
- 36 Technology, 2021, 11, 6543-6552.
- 37