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Table S1. Crystallographic data for 1-3.

1 2 3
i:::::ﬁ:l Cs1H7,DyO7P Co2H138DY>014P> Cs6H70Dy2016P2
FW (g.mol?) 990.55 1854.96 1386.06
Crystal system monoclinic Triclinic Triclinic
Space group P24/n P-1 P-1
Temperature 208 298 293
(K)
a (A) 15.1425(7) 13.1963(6) 11.0237(6)
b (A) 19.2903(12) 13.9250(7) 12.2222(6)
c (/3) 19.2838(9) 15.1757(5) 12.2882(6)
al(?) 90 85.183(3) 166.833(5)
8(°) 95.401(4) 86.395(3) 94.721(4)
v (°) 90 62.322(5) 90.589(6)
v (A3) 5607.9(5) 2459.9(2) 1470.28(14)
Peaca (Mg.m-3) 1.173 1.252 1.565
u (mm) 1.403 1.594 2.641
F(000) 2060.0 964.0 696.0
Independent 9862 11255 6785
relections
Rint 0.0461 0.0442 0.0278
Ry [1>20(1)] 0.0854 0.0487 0.0295
WR, (all data) 0.2807 0.0805 0.0614
Gof?td;‘:fz of 1.056 0.923 1.038
CCDC
numbers 2181171 2181172 2181173




Table S2. Crystallographic data for 4-6.

4 5 6
Empiric
C56H7OGd2016P2 C56H70Eu2016P2 C56H70Tb2016PZ
al formula
FW 1375.56 1364.98 1378.90
(g.mol?)
Crystal Triclinic Triclinic Triclinic
system
Space P-1 P-1 P-1
group
Tempera
298 298 298
ture (K)
a(A) 11.0947(6) 11.1109(7) 11.0522(5)
b (A) 12.2688(7) 12.2670(8) 12.2463(4)
c(A) 12.3032(7) 12.2742(9) 12.2833(5)
a(°) 116.703(6) 116.611(7) 116.775(4)
6 (°) 94.714(4) 94.872(6) 94.703(3)
v () 90.564(4) 90.557(5) 90.557(3)
Vv (A3) 1488.97(16) 1488.18(19) 1477.24(11)
Peacd 1.534 1.523 1.550
(Mg.m3)
u (mm-l) 2.326 2.206 2.493
F(000) 692.0 690.0 694.0
Independ 5192 5236 6723
ent relections
Rine 0.0685 0.0658 0.0300
Rull> 0.0443 0.0535 0.0326
20(1)]
wh, (al 0.0544 0.1177 0.0591
data)
Goodnes
0.961 0.978
s of fit on P2 0.907
CCDC
numbers 2181174 2181175 2181176




Table S3. Selected bond lengths (A) and angles (°) for 1.

Dy1-01 2.316(6) Dy1-06 2.307(7)
Dy1-02 2.32(3) Dy1-07 2.255(7)
Dy1-04 2.184(3) Dy1-05 2.21(2)
Dy1-03 2.309(4)

02-Dy1-01 140.2(9) 06-Dy1-03 147.3(3)
04-Dy1-01 88.2(6) 07-Dy1-01 83.4(3)
04-Dy1-02 109.5(14) 07-Dy1-02 79.9(13)
04-Dy1-03 82.9(5) 07-Dy1-03 99.3(2)
04-Dy1-06 87.4(6) 07-Dy1-06 85.8(3)
04-Dy1-07 170.5(6) 05-Dy1-01 146.9(15)
04-Dy1-05 74.0(17) 05-Dy1-02 72.8(17)
03-Dy1-01 75.7(4) 05-Dy1-03 127.5(17)
03-Dy1-02 71.8(4) 05-Dy1-06 78.6(16)
06-Dy1-01 72.8(3) 05-Dy1-07 111.1(17)

06-Dy1-02 140.6(4)




Table $4. Selected bond lengths (A) and angles (°) for 2.

Dy1-07 2.320(3) Dy1-02 2.308(3)
Dy1-06 2.294(3) Dy1-04 2.302(3)
Dy1-05 2.251(2) Dy1-03 2.272(3)
Dy1-01 2.290(2)

06-Dy1-07 72.55(9) 01-Dy1-02 78.28(9)
06-Dy1-02 79.10(9) 01-Dy1-04 79.84(9)
06-Dy1-04 146.14(10) 02-Dy1-07 130.51(10)
05-Dy1-07 85.32(10) 04-Dy1-07 81.40(10)
05-Dy1-06 81.40(9) 04-Dy1-02 134.76(10)
05-Dy1-01 151.48(9) 03-Dy1-07 156.66(10)
05-Dy1-02 129.61(10) 03-Dy1-06 123.78(11)
05-Dy1-04 75.17(9) 03-Dy1-01 106.03(11)
05-Dy1-03 81.45(11) 03-Dy1-02 72.13(10)
01-Dy1-07 77.51(9) 03-Dy1-04 76.68(11)

01-Dy1-06 114.04(10)




Table S5. Selected bond lengths (A) and angles (°) for 3.

Dy1-03 2.388(2) Dy1-04 2.306(2)
Dy1-07 2.341(2) Dy1-02 2.424(2)
Dy1-05 2.365(2) Dy1-06 2.317(2)
Dy1-01 2.360(2) Dy1-08 2.338(2)
03-Dy1-02 73.63(7) 04-Dy1-02 141.93(7)
07-Dy1-03 136.71(8) 04-Dy1-06 73.73(8)
07-Dy1-05 75.67(8) 04-Dy1-08 85.74(8)
07-Dy1-01 112.45(8) 06-Dy1-03 119.95(8)
07-Dy1-02 69.26(7) 06-Dy1-07 79.39(8)
05-Dy1-03 74.89(8) 06-Dy1-05 72.42(8)
05-Dy1-02 76.88(7) 06-Dy1-01 140.30(8)
01-Dy1-03 78.34(8) 06-Dy1-02 140.48(8)
01-Dy1-05 146.18(7) 06-Dy1-08 76.13(8)
01-Dy1-02 76.02(7) 08-Dy1-03 146.41(8)
04-Dy1-03 72.81(7) 08-Dy1-07 71.82(8)
04-Dy1-07 148.42(7) 08-Dy1-05 138.06(7)
04-Dy1-05 110.66(8) 08-Dy1-01 72.61(7)

04-Dy1-01 80.08(8) 08-Dy1-02 114.10(8)




Table S$6. Selected bond lengths (A) and angles (°) for 4.

Gd1-03 2.373(3) Gd1-02 2.447(2)
Gd1-01 2.386(3) Gd1-05 2.348(3)
Gd1-06 2.395(3) Gd1-04 2.371(3)
Gd1-07 2.423(3) Gd1-08 2.334(3)
03-Gd1-01 72.67(11) 05-Gd1-02 139.92(10)
03-Gd1-06 137.60(12) 05-Gd1-04 79.26(12)
03-Gd1-07 146.63(11) 04-Gd1-03 71.29(12)
03-Gd1-02 114.31(11) 04-Gd1-01 112.01(11)
01-Gd1-06 146.51(10) 04-Gd1-06 75.90(12)
01-Gd1-07 78.69(11) 04-Gd1-07 137.21(11)
01-Gd1-02 76.39(9) 04-Gd1-02 69.19(10)
06-Gd1-07 75.05(11) 08-Gd1-03 86.18(12)
06-Gd1-02 76.66(10) 08-Gd1-01 80.14(11)
07-Gd1-02 73.99(10) 08-Gd1-06 110.51(12)
05-Gd1-03 76.02(12) 08-Gd1-07 72.17(11)
05-Gd1-01 140.42(10) 08-Gd1-02 141.83(10)
05-Gd1-06 72.07(11) 08-Gd1-05 74.16(12)

05-Gd1-07 119.70(12) 08-Gd1-04 148.61(11)




Table S7. Selected bond lengths (A) and angles (°) for 5.

Eul-02 2.465(5) Eul-08 2.366(5)
Eul-03 2.427(5) Eul-01 2.401(5)
Eul-06 2.403(5) Eul-05 2.360(5)
Eul-07 2.374(5) Eul-04 2.338(5)
03-Eu1-02 73.94(16) 01-Eu1-06 146.83(16)
06-Eu1-02 76.65(17) 05-Eul1-02 139.59(16)
06-Eu1-03 75.28(16) 05-Eu1-03 119.45(19)
07-Eul1-02 69.59(16) 05-Eu1-06 71.47(16)
07-Eu1-03 137.55(17) 05-Eul1-07 78.90(19)
07-Eu1-06 75.83(18) 05-Eu1-08 76.39(19)
07-Eu1-01 112.30(18) 05-Eu1-01 140.64(17)
08-Eu1-02 114.26(18) 04-Eu1-02 141.44(15)
08-Eu1-03 146.82(17) 04-Eu1-03 71.54(17)
08-Eu1-06 137.22(16) 04-Eu1-06 110.0(2)
08-Eu1-07 70.81(17) 04-Eu1-07 148.72(17)
08-Eu1-01 72.73(16) 04-Eu1-08 87.13(19)
01-Eu1-02 76.68(16) 04-Eu1-01 80.19(19)

01-Eul-03 78.66(16) 04-Eul-05 74.41(18)




Table $8. Selected bond lengths (A) and angles (°) for 6.

Tb1-03 2.400(2) Th1-06 2.379(2)
Tb1-02 2.436(2) Tb1-01 2.369(2)
Tb1-08 2.357(2) Tb1-05 2.328(2)
Tb1-07 2.353(2) Tb1-04 2.315(2)
03-Tb1-02 73.66(8) 01-Tb1-06 146.39(7)
08-Tb1-03 136.98(8) 05-Tb1-03 119.96(9)
08-Tb1-02 69.30(7) 05-Tb1-02 140.23(7)
08-Th1-06 75.73(8) 05-Tb1-08 79.33(8)
08-Tb1-01 112.13(8) 05-Tb1-07 76.13(8)
07-Tb1-03 146.46(8) 05-Th1-06 72.20(8)
07-Tb1-02 114.18(8) 05-Tb1-01 140.39(8)
07-Tb1-08 71.46(8) 04-Tb1-03 72.66(8)
07-Tb1-06 137.74(7) 04-Tb1-02 141.97(7)
07-Tb1-01 72.60(8) 04-Tb1-08 148.36(8)
06-Tb1-03 75.17(7) 04-Tb1-07 85.96(9)
06-Tb1-02 76.75(8) 04-Tb1-06 110.63(9)
01-Tb1-03 78.42(8) 04-Tb1-01 80.27(8)

01-Tb1-02 76.15(7) 04-Tb1-05 73.81(8)




Table S9. Continuous Shape Measures (CShMs) of the coordination geometry in compounds 1-6. The three closer
ideal geometries to the real complexes are listed and below are the symmetry and description for each polyhedron.

Complex s Polyhedron
1.645 CTPR-7 C2v Capped trigonal prism
1 Dyl 2.082 COC-7 C3v Capped octahedron
2.990 PBPY-7 D5h Pentagonal bipyramid
0.467 COC-7 C3v Capped octahedron
Dyl 1.074 CTPR-7 C2v Capped trigonal prism
5 6.639 PBPY-7 D5h Pentagonal bipyramid
0.467 COC-7 C3v Capped octahedron
Dy’ 1.074 CTPR-7 C2v Capped trigonal prism
6.639 PBPY-7 D5h Pentagonal bipyramid
0.373 SAPR-8 D4d Square antiprism
Dy1 1.988 BTPR-8 C2v Biaugmented trigonal prism
3 2.011 TDD-8 D2d Triangular dodecahedron
0.373 SAPR-8 D4d Square antiprism
Dyl 1.988 BTPR-8 C2v Biaugmented trigonal prism
2.011 TDD-8 D2d Triangular dodecahedron
0.394 SAPR-8 D4d Square antiprism
Gd1 2.016 BTPR-8 C2v Biaugmented trigonal prism
A 2.074 TDD-8 D2d Triangular dodecahedron
0.394 SAPR-8 D4d Square antiprism
GdY 2.016 BTPR-8 C2v Biaugmented trigonal prism
2.074 TDD-8 D2d Triangular dodecahedron
0.429 SAPR-8 D4d Square antiprism
Eul 1.994 BTPR-8 C2v Biaugmented trigonal prism
5 2.049 TDD-8 D2d Triangular dodecahedron
0.429 SAPR-8 D4d Square antiprism
Eul’ 1.994 BTPR-8 C2v Biaugmented trigonal prism
2.049 TDD-8 D2d Triangular dodecahedron
0.383 SAPR-8 D4d Square antiprism
Tb1 1.997 BTPR-8 C2v Biaugmented trigonal prism
6 2.047 TDD-8 D2d Triangular dodecahedron
0.383 SAPR-8 D4d Square antiprism
Tb1 1.997 BTPR-8 C2v Biaugmented trigonal prism

2.047 TDD-8 D2d Triangular dodecahedron




Table $10. Best fitted parameters (xr, Xs, T and a) with the extended Debye model for complex 1 at 800 Oe in the

temperature range 2-4.5 K.

T/ K Xs / cm3 mol? Xt/ cm3 mol? /s o
2 0.32902 5.98389 0.00626 0.26029
2.5 0.35777 4.78013 0.00314 0.18052
3 0.33282 4.06174 0.00158 0.13437
35 0.32543 3.50318 0.00079 0.09153
4 0.33101 3.08828 0.00041 0.06547
4.5 0.37385 2.76536 0.00023 0.04999

Table S11. Best fitted parameters (X1, Xs, T and a) with the extended Debye model for complex 2 at 1500 Oe in the

temperature range 3-8.5 K.

T/ K Xs / cm3 mol? xr/ cm3 mol? /s o
3 0.14156 10.40643 0.13001 0.28921
3.5 0.19116 8.24229 0.04459 0.27579
4 0.30461 6.92120 0.01826 0.23698
4.5 0.45242 6.06284 0.00882 0.19054
5 0.54450 5.45665 0.00476 0.15468
5.5 0.56214 4.97633 0.00270 0.13373
6 0.54373 4.60324 0.00163 0.12911
6.5 0.52072 4.27870 0.00100 0.12909
7 0.52186 3.99742 0.00065 0.12759
7.5 0.54846 3.74438 0.00043 0.12398
8 0.61211 3.51809 0.00030 0.11722

8.5 0.91669 3.31669 0.00021 0.10963




Table S12. Best fitted parameters (Xt, Xs, T and a) with the extended Debye model for complex 3 at 1500 Oe in the

temperature range 3-8 K.

T/ K Xs / cm3 mol? Xt/ cm3 mol? /s o
3 0.34672 8.50440 0.13255 0.13727
3.5 0.25665 7.24854 0.05122 0.13438
4 0.20806 6.34888 0.02015 0.12974
4.5 0.16965 5.72243 0.00850 0.11491
5 0.15203 5.17176 0.00399 0.09909
5.5 0.12936 4.76839 0.00205 0.09307
6 0.12056 4.35878 0.00111 0.07952
6.5 0.09583 4.08468 0.00066 0.08137
7 0.13116 3.78427 0.00041 0.06039
7.5 0.21562 3.53164 0.00027 0.03625
8 0.24302 3.33775 0.00018 0.03133

Table S13. Best fitted parameters (X1, Xs, T and a) with the extended Debye model for complex 3 at 0 Oe in the

temperature range 2-7.5 K.

T/ K Xs / cm3 mol? Xt/ cm3 mol? t/s o
2 5.90646 0.11094 0.00069 0.19061
2.5 4.66657 8.95381 0.00063 0.19781
3 3.72740 7.49116 0.00056 0.21871
3.5 2.99131 6.40937 0.00049 0.22468
4 3.40803 5.58945 0.00073 0.12321
4.5 3.02332 4.96855 0.00067 0.11677
5 2.74901 4.46769 0.00062 0.09502
5.5 2.48808 4.05524 0.00052 0.07644
6 2.28395 3.72233 0.00043 0.05449
6.5 2.09396 3.44299 0.00033 0.04459

7 1.94474 3.19346 0.00025 0.02909



7.5 1.84069 2.98388 0.00019 0.00978

Table $14 The curves are fitted by the modified Arrhenius relationship the QTM process is taken account 1/7=

1/ qrm + CT" + 757 texp(-Uesi/kT).

complex Tqmm (S) C (s-K™) n 7 (s) Uesi/ ks (K)

3 6.25x10* 1.29x102 1.60 5.13%x10% 27.12

Table S15 The curves are fitted by the modified Arrhenius relationship the Raman process is taken account 1/ 7=

CT" + 15 exp(-Uett/kT).

complex C (s-K™) n 7 (s) Ueri/ks (K)
1 1.05x10! 3.39 3.46%x10° 19.03
2 1.39x10? 6.03 1.03x10° 44.87
3 5.62x103 6.54 6.42x107 45.22

Fig. S1 Partially labeled molecular structure of complexes 1, the part of the disorder is shown as front ellipse in

blue line. Color code: Dy (teal), P (pink), O (red), C (grey).



Fig. S2 Partially labeled molecular structure of complexes 4. Color code: Gd (teal), P (pink), O (red), C (grey).

Fig. S4 Partially labeled molecular structure of complexes 6. Color code: Tb (teal), P (pink), O (red), C (grey).
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Fig. S17 The frequency dependent in-phase (x') and out-of-phase (x"') ac susceptibility under 1500 Oe field for 2.
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Fig. S18 The frequency dependent in-phase (x') and out-of-phase (x") ac susceptibility under 1500 Oe field for 3.
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Fig. $19 The frequency dependent in-phase (x') ac susceptibility and out-of-phase (x") ac susceptibility under 1500

Oe field for 4.
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Fig. $20 The frequency dependence of the out-of-phase (x'') ac susceptibility component at 2 K under different dc

fields (left) and the frequency peak value of the dc external magnetic field at 2 K (right) for complex 1.
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Fig. $21 The frequency dependence of the out-of-phase (x'') ac susceptibility component at 2 K under different dc

field for complexes 2 (left) and 3 (right).
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Fig. S22 Cole-Cole plots for the ac susceptibilities under 800 Oe dc field for 1. The solid lines correspond to the best

fit obtained with a generalized Debye model.
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Fig. S23 Cole-Cole plots for the ac susceptibilities under 1500 Oe dc field for 2. The solid lines correspond to the

best fit obtained with a generalized Debye model.
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Fig. S24 Cole-Cole plots for the ac susceptibilities under 1500 Oe dc field for 3. The solid lines correspond to the

best fit obtained with a generalized Debye model.
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Fig. $25 Cole-Cole plots for the ac susceptibilities under 0 Oe dc field for 3. The solid lines correspond to the best

fit obtained with a generalized Debye model.

Fig. S27 Orientations of the anisotropy axes for each of the two Dy" ions in 2 as calculated by MAGELLAN.
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Fig. $28 Emission spectra of 1 (A¢x = 333 nm) (left) and 2 (Aey = 342 nm) (right).
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Fig. S29 Emission spectra of 5 (Aex = 393 nm).
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Fig. $30 Experimental and simulated powder X-ray diffraction (PXRD) patterns for 1 (left) and 2 (right).
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Fig. $31 Experimental and simulated powder X-ray diffraction (PXRD) patterns for 3 (left) and 4 (right).
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Fig. $S32 Experimental and simulated powder X-ray diffraction (PXRD) patterns for 5 (left) and 6 (right).



