Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Visible-light-driven photocatalytic CO₂ reduction to formate over zirconiumporphyrin metal-organic framework with *shp-a* topology

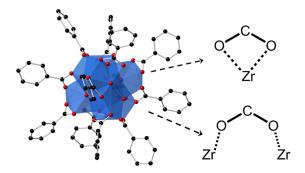
Dashu Chen,^a Zhifen Guo,^b Bin Li*a and Hongzhu Xing*b

^aCollege of Chemistry, Chemical Engineering and Resource Utilization; Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China

^bProvincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun, 130024, China E-mail: libinzh62@163.com (B. Li)

E-mail: xinghz223@nenu.edu.cn (H. Xing)

Materials


CH₃CN (99.9%, for HPLC, Acros), TEOA (99%, Acros), Zirconium (IV) chloride (ZrCl₄) (99%, TCI), Zirconium propoxide solution (70 wt.% in *n*-propanol, Acros), acetic acid (99.5%, Innochem), methylacrylic acid (99.0%, Aladdin), tetrakis(4-carboxyphenyl)-porphyrin (TCPP, Jinan Henghua Sci. & Tec. Co., Ltd.), ¹³CO₂ (99%, Wuhan newreid Special Gas Co., Ltd.). Other reagents were of analytical grade and used without further purification.

Characterization

The powder X-ray diffraction (PXRD) patterns were recorded with a Rigaku D-MAX 2550 diffractometer using Cu-K α radiation ($\lambda = 0.15417$ nm) with 2θ ranging from 3 to 40°. The morphologies of samples were characterized by a field emission scanning electron microscopy (XL30ESEM-FEG, USA). N₂ adsorption were measured by using Micromeritics ASAP 2020 instrument. UV-vis spectra of solid state samples were measured on a HITACHI U-4100 spectrophotometer. Mott-Schottky measurement was conducted using Pt and Ag/AgCl electrodes as the counter electrode and reference electrode, respectively. The working electrode was prepared on a fluorine-doped tin oxide (FTO) glass, and 0.2 M of Na₂SO₄ solution was used as electrolyte. Photocurrent measurements were conducted on electrochemical workstation CHI 660E (ChenHua Instrument, Shanghai). The ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE III 600M system (600 MHz). The fluorescence emission was recorded on an LS-55 fluorescence spectrometer made by PerkinElmer. FT-IR were recorded on a Mattson Alpha-Centauri spectrometer within 400-4000 cm⁻¹ using the samples prepared as pellets with KBr. The formed formate was detected by using a Metrohm 940 Professional IC Vario. EPR spectra were obtained on a JES-FA 200 EPR spectrometer; scanning frequency: 9.45 GHz; scanning power: 0.998 mW; scanning temperature: 25 °C. The in situ EPR experiments were carried out using a 500 W xenon arc lamp where a 420 nm optical filter was used to cut off ultraviolet light. The stable radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used as a standard for the calculation of g values. In the molecular docking study part, the 3D structures of CO₂, Zr clusters and TCPP ligand were first prepared through Discovery Studio (Biovia Inc. San Diego, CA, USA) by referring to the crystal structures of PCN-223. Docking modeling used the CDOCKER method in Discovery Studio. Combining CDocker Energy and CDocker Interaction Energy values, a reasonable docking conformation is selected.

Synthesis of Zr₆ methacrylate oxoclusters Zr₆(OH)₄O₄(OMc)₁₂(PrOH)

2 mL of Zirconium(IV) propoxide (ca. 70%, solution in n-propanol, 4.95 mmol) was mixed under an N_2 atmosphere with 2.5 mL of methacrylic acid and stored in a closed Schlenk tube at ambient temperature for 11 days. After washed with n-propanol, the resulted samples were dried at 60 °C.

Figure S1. Two kinds of coordination modes for carboxyl group of TCPP ligand in PCN-223.

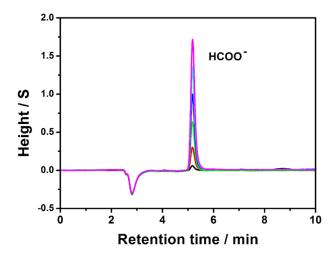


Figure S2. The ion chromatograms of HCOO standard solution.

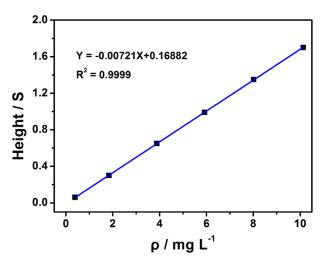
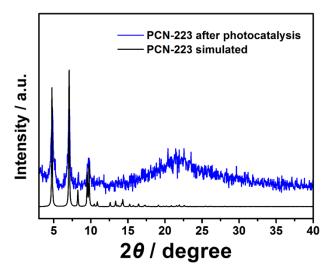



Figure S3. Calibration curve of HCOO solution.

Figure S4. PXRD patterns of PCN-223 after 10 h photocatalytic reaction and the simulated PCN-223.

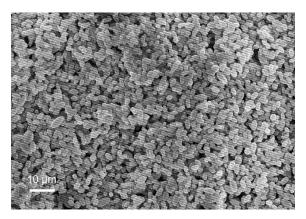
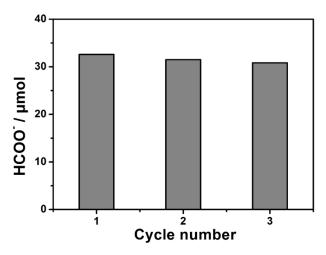



Figure S5. SEM image of PCN-223 after 10 h photocatalytic reaction.

Figure S6. The cyclic tests of PCN-223 for photocatalytic CO₂ reduction under 10 h visible light irradiation.

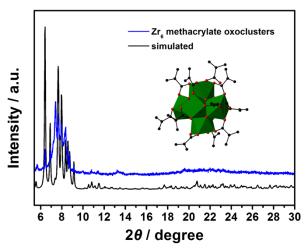


Figure S7. PXRD patterns of Zr_6 methacrylate oxoclusters and the simulated one.

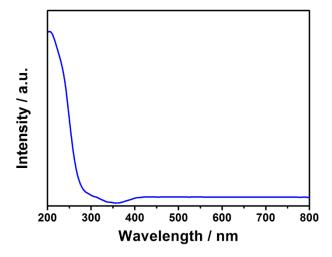
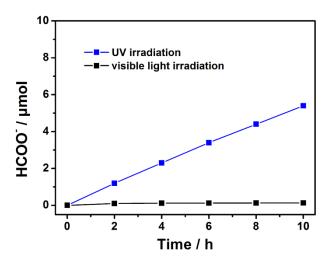



Figure S8. Solid UV-Vis absorption spectra of Zr_6 methacrylate oxoclusters.

Figure S9. Amounts of HCOO⁻ produced by Zr₆ methacrylate oxoclusters as a function of visible-light irradiation time {the solution were irradiated by a 300 W Xe lamp with a 420 nm cut-off filter (black) or six 10 W LED lamp (260-280 nm, blue)}.

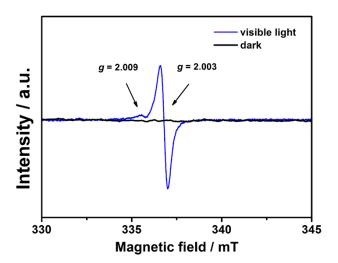


Figure S10. EPR spectra with g values for PCN-223.

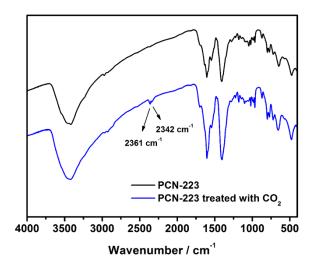


Figure S11. IR spectra of PCN-223 under different conditions.

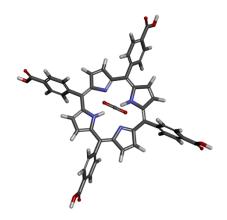


Figure S12. The optimal molecular docking conformation of CO_2 and TCPP ligand (cdocker energy = -3.72 kacl·mol⁻¹, cdocker interaction energy = 3.72 kacl·mol⁻¹).