Supporting Information

Visible-light-driven photocatalytic CO$_2$ reduction to formate over zirconium-porphyrin metal-organic framework with shp-a topology

Dashu Chen,a Zhifen Guo,b Bin Li*a and Hongzhu Xing*b

aCollege of Chemistry, Chemical Engineering and Resource Utilization; Post-doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, No. 26 Hexing Road, Harbin 150040, China

bProvincial Key Laboratory of Advanced Energy Materials, College of Chemistry, Northeast Normal University, No. 5268 Renmin Street, Changchun, 130024, China

E-mail: libinzh62@163.com (B. Li)

E-mail: xinghz223@nenu.edu.cn (H. Xing)
Materials

CH$_3$CN (99.9%, for HPLC, Acros), TEOA (99%, Acros), Zirconium (IV) chloride (ZrCl$_4$) (99%, TCI), Zirconium propoxide solution (70 wt.% in n-propanol, Acros), acetic acid (99.5%, Innochem), methylacrylic acid (99.0%, Aladdin), tetrais(4-carboxyphenyl)-porphyrin (TCPP, Jinan Henghua Sci. & Tec. Co., Ltd.), 13CO$_2$ (99%, Wuhan newreid Special Gas Co., Ltd.). Other reagents were of analytical grade and used without further purification.

Characterization

The powder X-ray diffraction (PXRD) patterns were recorded with a Rigaku D-MAX 2550 diffractometer using Cu-Kα radiation ($\lambda = 0.15417$ nm) with 2θ ranging from 3 to 40°. The morphologies of samples were characterized by a field emission scanning electron microscopy (XL30ESEM-FEG, USA). N$_2$ adsorption were measured by using Micromeritics ASAP 2020 instrument. UV-vis spectra of solid state samples were measured on a HITACHI U-4100 spectrophotometer. Mott-Schottky measurement was conducted using Pt and Ag/AgCl electrodes as the counter electrode and reference electrode, respectively. The working electrode was prepared on a fluorine-doped tin oxide (FTO) glass, and 0.2 M of Na$_2$SO$_4$ solution was used as electrolyte. Photocurrent measurements were conducted on electrochemical workstation CHI 660E (ChenHua Instrument, Shanghai). The 13C Nuclear Magnetic Resonance (NMR) spectra were recorded on a Bruker AVANCE III 600M system (600 MHz). The fluorescence emission was recorded on an LS-55 fluorescence spectrometer made by PerkinElmer. FT-IR were recorded on a Mattson Alpha-Centauri spectrometer within 400–4000 cm$^{-1}$ using the samples prepared as pellets with KBr. The formed formate was detected by using a Metrohm 940 Professional IC Vario. EPR spectra were obtained on a JES-FA 200 EPR spectrometer; scanning frequency: 9.45 GHz; scanning power: 0.998 mW; scanning temperature: 25 °C. The in situ EPR experiments were carried out using a 500 W xenon arc lamp where a 420 nm optical filter was used to cut off ultraviolet light. The stable radical of 2,2-diphenyl-1-picrylhydrazyl (DPPH) was used as a standard for the calculation of g values. In the molecular docking study part, the 3D structures of CO$_2$, Zr clusters and TCPP ligand were first prepared through Discovery Studio (Biovia Inc. San Diego, CA, USA) by referring to the crystal structures of PCN-223. Docking modeling used the CDOCKER method in Discovery Studio. Combining CDocker Energy and CDocker Interaction Energy values, a reasonable docking conformation is selected.
Synthesis of Zr_6 methacrylate oxoclusters $\text{Zr}_6(\text{OH})_4\text{O}_4(\text{OMc})_{12}(\text{PrOH})$

2 mL of Zirconium(IV) propoxide (ca. 70%, solution in n-propanol, 4.95 mmol) was mixed under an N_2 atmosphere with 2.5 mL of methacrylic acid and stored in a closed Schlenk tube at ambient temperature for 11 days. After washed with n-propanol, the resulted samples were dried at 60 °C.

Figure S1. Two kinds of coordination modes for carboxyl group of TCPP ligand in PCN-223.

Figure S2. The ion chromatograms of HCOO^- standard solution.
Figure S3. Calibration curve of HCOO⁻ solution.

Figure S4. PXRD patterns of PCN-223 after 10 h photocatalytic reaction and the simulated PCN-223.
Figure S5. SEM image of PCN-223 after 10 h photocatalytic reaction.

Figure S6. The cyclic tests of PCN-223 for photocatalytic CO$_2$ reduction under 10 h visible light irradiation.
Figure S7. PXRD patterns of Zr$_6$ methacrylate oxoclusters and the simulated one.

Figure S8. Solid UV-Vis absorption spectra of Zr$_6$ methacrylate oxoclusters.
Figure S9. Amounts of HCOO⁻ produced by Zr₆₆ methacrylate oxoclusters as a function of visible-light irradiation time (the solution were irradiated by a 300 W Xe lamp with a 420 nm cut-off filter (black) or six 10 W LED lamp (260-280 nm, blue)).

Figure S10. EPR spectra with g values for PCN-223.
Figure S11. IR spectra of PCN-223 under different conditions.

Figure S12. The optimal molecular docking conformation of CO$_2$ and TCPP ligand (cdocker energy = -3.72 kcal·mol$^{-1}$, cdocker interaction energy = 3.72 kcal·mol$^{-1}$).