## **Electronic Supplementary Information**

## Separation and recovery of graphite from spent lithium-ion batteries

### for synthesizing micro-expanded sorbents

Zhiwei Geng<sup>a,b,1</sup>, Junjie Liu<sup>a,b,1</sup>, Yanni Geng<sup>a,b</sup>, Mingming Peng<sup>a,b</sup>, Mopeng Xiong<sup>a,b</sup>,

Hui Shi<sup>a,b,\*</sup> and Xubiao Luo<sup>a,b</sup>

This paper is preparing for publication in New Journal of Chemistry

#### Section 1: Economic and Environmental Benefit Assessment

Based on the data provided by reference, and introducing the EverBatt model<sup>1</sup> and the GREET model,<sup>2</sup> we performed a laboratory-scale economic and environmental analysis<sup>3, 4</sup> of spent graphite for the preparation of adsorbents. Assume that 1 kg of NCM111 battery waste is recycled. The battery cost is 0.00\$/kg based on donation, and the weight of graphite in the battery is 19.4%,<sup>5</sup> corresponding to 194g. Do not consider the pretreatment cost of spent graphite recovery such as battery dismantling, as well as equipment cost and other costs, only focus on the process of preparing adsorbent from spent graphite. In addition, the calculation of reagent cost and equipment energy consumption is based on the manufacturer in this article. The electric furnace power is 2.5kW, the constant temperature magnetic stirring power is 840W, and the electricity fee is 0.23\$/kWh.<sup>6</sup> Taking into account the product loss during the preparation of the adsorbent, the recovery rate is calculated at 90%, and the price of the product is based on the price of similar products. Furthermore, does not take into account the loss of CO<sub>2</sub>, the process CO<sub>2</sub> emissions from battery recycling are calculated as<sup>1.7</sup>

$$P_{CO2} = P_{CO2,combusion} + P_{CO2,decomposition} \tag{1}$$

Where  $P_{CO2,combustion}$  denotes process  $CO_2$  emissions from material combustion,  $P_{CO2,decomposition}$  represents process emissions from material decomposition during recycling processes.  $P_{CO2,decomposition}$  is estimated from stoichiometry, and  $P_{CO2,combustion}$ can be estimated as

$$P_{CO2,combusion} = \sum_{i} m_i \times \frac{Carbon \ content_i}{Carbon \ content_{CO2}}$$
(2)

Where  $m_i$  denotes the mass of material i that is combusted in the recycling process, and Carbon content<sub>i</sub> denotes the carbon content of material i, estimated in molar mass.

The economic and environmental benefit analysis are shown in Table S1, calculated at the exchange rate of RMB to US dollar of 1\$=7.0129 RMB.



Fig. S1 (a) Nitrogen adsorption-desorption isotherms, (b) pore size distribution,

and (c) contribution of pore size to pore volume of SG and MEG.

# Section 3:

| Samples | Specific surface area (m <sup>2</sup> /g) | Pore volume $(cm^3/g)$ | Pore size (nm) |
|---------|-------------------------------------------|------------------------|----------------|
| SG      | 2.2779                                    | 0.003581               | 41.4662        |
| MEG     | 2.6501                                    | 0.007414               | 28.4889        |

Table S1. Pore system of SG and MEG.

| Types | ID     | I <sub>G</sub> , | $I_D \ / \ I_{G'}$ |
|-------|--------|------------------|--------------------|
| SG    | 637455 | 414799           | 1.537              |
| MEG   | 566896 | 409855           | 1.383              |

Table S2. Pore system of SG and MEG.

| Adsorbents           | Cost<br>(\$/kg cell) | Energy<br>consumption<br>(MJ/kg) | Economic<br>effects<br>(\$/kg cell) | Greenhouse<br>gases emission<br>(g/kg) | Ref.                                  |
|----------------------|----------------------|----------------------------------|-------------------------------------|----------------------------------------|---------------------------------------|
| MnO <sub>2</sub> -AG | 46.48                | 66.312                           | -31.54                              | 640.44                                 | Tuo Zhao et<br>al., 2017 <sup>8</sup> |
| RTEG                 | 74.75                | _                                | -44.87                              | 639.56                                 | Ting Liu et<br>al., 2017 <sup>9</sup> |
| Mg-MCMB              | 57.54                | 29.646                           | -45.47                              | 651.88                                 | Yan Zhang et al., 2016 <sup>10</sup>  |
| MEG                  | 26.68                | 26.388                           | 3.2                                 | 639.56                                 | This study                            |

Table S3. Economic and environmental benefit analysis for recycling spent

graphite to prepare sorbents

#### References

1. S. J. Dai Q, Ahmed S, et al., *Argonne National Lab.(ANL), Argonne, IL (United States)*, 2019, DOI: https://doi.org/10.2172/1530874.

2. E. A. Wang M, Lee U, et al., Argonne National Lab.(ANL), Argonne, IL (United States), 2021.

3. M. Li, B. Zhang, X. Qu, M. Cai, D. Liu, F. Zhou, H. Xie, S. Gao and H. Yin, *ACS Sustainable Chemistry & Engineering*, 2022, **10**, 8305-8313.

4. J. Wang, Q. Zhang, J. Sheng, Z. Liang, J. Ma, Y. Chen, G. Zhou and H. M. Cheng, *Natl Sci Rev*, 2022, **9**, nwac097.

5. G. L. Dunn J B, Barnes M, et al., *Argonne National Lab.(ANL), Argonne, IL (United States)*, 2014, DOI: <u>https://doi.org/10.2172/1177517</u>.

6. Y. Huang, P. Shao, L. Yang, Y. Zheng, Z. Sun, L. Fang, W. Lv, Z. Yao, L. Wang and X. Luo, *Resources, Conservation and Recycling*, 2021, **174**.

7. M. Mohr, J. F. Peters, M. Baumann and M. Weil, *Journal of Industrial Ecology*, 2020, **24**, 1310-1322.

8. T. Zhao, Y. Yao, M. Wang, R. Chen, Y. Yu, F. Wu and C. Zhang, *ACS Appl Mater Interfaces*, 2017, **9**, 25369-25376.

T. Liu, R. Zhang, X. Zhang, K. Liu, Y. Liu and P. Yan, *Carbon*, 2017, **119**, 544-547.
Y. Zhang, X. Guo, F. Wu, Y. Yao, Y. Yuan, X. Bi, X. Luo, R. Shahbazian-Yassar, C. Zhang and K. Amine, *ACS Appl Mater Interfaces*, 2016, **8**, 21315-21325.