Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

High-frequency ultrasonic pyrolysis of 200 nm ultrafine Fe-doped NiO hollow

spheres for efficient oxygen evolution catalysis

Yadong Liu[§], Yong Wang[§], Yongzhi Zhao, Luan Liu, Sijia Liu, Deyin zhang, Haoyang Wu, Baorui Jia^{*}, Lin Zhang^{*}, Mingli Qin^{*}, Xuanhui Qu^{*}

Y. Liu, Y. Wang, Y. Zhao, L. Liu, S. Liu, D. Zhang, H. Wu, Prof. B. Jia, Prof.

L. Zhang, Prof. M. Qin, Prof. X. Qu

Institute for Advanced Materials and Technology

University of Science and Technology Beijing

Beijing 100083, China

Email: jiabaorui@ustb.edu.cn (Assoc. Prof. B. Jia); zlin@ustb.edu.cn (Prof. L.

Zhang); qinml@mater.ustb.edu.cn (Prof. M Qin); quxh@ustb.edu.cn (Prof. X. Qu)

Y. Liu§ and Y. Wang§ contributed equally to this work.

Prof. M. Qin, Prof. L. Zhang, Prof. X. Qu

Beijing Advanced Innovation Center for Materials Genome Engineering University of Science and Technology Beijing

Beijing 100083, China

Supplementary Figure 1. (**a**, **b**) TEM images of NiO hollow nanospheres at 1.7 MHz frequency. (**c**, **d**) TEM images of NiO hollow nanospheres at 3.0 MHz frequency.

Supplementary Figure 2. TEM images of $Ni_{0.8}Fe_{0.2}O$, $Ni_{0.7}Fe_{0.3}O$, $Ni_{0.6}Fe_{0.4}O$ and $Ni_{0.5}Fe_{0.5}O$.

Supplementary Figure 3. (a) TEM image, (b) HRTEM image and (c) EDS mapping of $Ni_{0.9}Fe_{0.1}O$ hollow nanospheres after OER.

Catalyst	Electrode	Overpotential	Electrolyt	Reference
	substrate	(mV)	e	
Ni _{0.9} Fe _{0.1} O hollow	Glassy carbon	288	1 M KOH	This work
nanospheres				
Hollow cobalt nickel	Glassy carbon	310	1 M KOH	1
oxides microspheres				
Porous NiO hollow	Glassy carbon	323	1 M KOH	2
spheres				
Porous NiO nano flowers	Glassy carbon	346	1 M KOH	2
3D porous	Glassy carbon	353	1 М КОН	3
carbon@Ni/NiO				
Ni-Co mixed oxide	Glassy carbon	380	1 M KOH	4
nanocages				
Hollow NiCo ₂ O ₄ arrays	Glassy carbon	340	1 M KOH	5
CoNiO ₂ /SNC	Glassy carbon	280	1 M KOH	6
CoNiOx/NC	Glassy carbon	335	1 M KOH	6
Multi-shelled Co _{0.5} Ni _{0.5}	Glassy carbon	268	1 M KOH	7
oxide/phosphide				
Porous nanoscale	Glassy carbon	264	1 M KOH	8
NiO/NiCo ₂ O ₄				
U-NiO/NiCo ₂ O ₄	Glassy carbon	387	0.1M KOH	9
C-NiO/NiCo ₂ O ₄	Glassy carbon	430	0.1M KOH	9
Multilayer hollow	Glassy carbon	400	0.1M KOH	10
MnCo ₂ O ₄ microsphere				
3D NiFe ₂ O ₄ hollow	Glassy carbon	370	0.1M KOH	11
spheres				

Supplementary Table 1. Comparisons of the η_{10} of Ni_{0.9}Fe_{0.1}O hollow nanospheres with representative electrocatalysts reported previously.

References :

- J. Zhao, X. Wang, X. Wang, Y. Li, X. Yang, G. Li and F. Li, Ultrathin Porous Nanosheet-Assembled Hollow Cobalt Nickel Oxide Microspheres with Optimized Compositions for Efficient Oxygen Evolution Reaction, *Inorg. Chem. Front.*, 2018, 5, 1886-1893.
- 2 B. P. Reddy, K. Mallikarjuna, M. Kumar, M. C. Sekhar, Y. Suh and S. Park, Highly Porous Metal Organic Framework Derived NiO Hollow Spheres and Flowers for Oxygen Evolution Reaction and Supercapacitors, *Ceram. Int.*, 2021, 47, 3312-3321.
- 3 Y. Li, J. Huang, G. Rao, C. Wu, X. Du, Y. Sun, X. Wang and C. Yang, Enhanced Water Oxidation Activity of 3D Porous Carbon by Incorporation of Heterogeneous Ni/NiO Nanoparticles, *Appl. Surf. Sci.*, 2020, **530**, 147192.
- 4 L. Han, X. Yu and X. W. D. Lou, Formation of Prussian-Blue-Analog Nanocages Via a Direct Etching Method and their Conversion Into Ni-Co-Mixed Oxide for Enhanced Oxygen Evolution, *Adv. Mater.*, 2016, 28, 4601-4605.
- 5 C. Guan, X. Liu, W. Ren, X. Li, C. Cheng and J. Wang, Rational Design of Metal-Organic Framework Derived Hollow NiCo₂O₄ Arrays for Flexible Supercapacitor and Electrocatalysis, *Adv. Energy Mater.*, 2017, 7, 1602391.
- 6 Q. Zhang, W. Han, Z. Xu, Y. Li, L. Chen, Z. Bai, L. Yang and X. Wang, Hollow Waxberry-Like Cobalt-Nickel Oxide/S,N-Codoped Carbon Nanospheres as a Trifunctional electrocatalyst for OER, ORR, and HER, *RSC Adv.*, 2020, 10, 27788-27793.
- 7 Y. Yang, H. Wan, G. Chen, N. Zhang, J. Li, W. Ma, X. Liu and R. Ma, Multi-Shelled Cobalt-Nickel Oxide/Phosphide Hollow Spheres for an Efficient Oxygen Evolution Reaction, *Dalton Trans.*, 2020, 49, 10918-10927.
- 8 S. Sun, X. Jin, B. Cong, X. Zhou, W. Hong and G. Chen, Construction of porous nanoscale NiO/NiCo₂O₄ heterostructure for highly enhanced electrocatalytic oxygen evolution activity, *J. Catal.*, 2019, **379**, 1-9.
- 9 A. Cetin and E. N. Esenturk, Hierarchical Nanowire and Nanoplate-Assembled NiCo₂O₄-NiO Biphasic Microspheres as Effective Electrocatalysts for Oxygen

Evolution Reaction, Mater. Today Chem., 2019, 14, 100215.

- 10 K. Zeng, W. Li, Y. Zhou, Z. Sun, C. Lu, J. Yan, J. Choi and R. Yang, Multilayer Hollow MnCo₂O₄ Microsphere with Oxygen Vacancies as Efficient Electrocatalyst for Oxygen Evolution Reaction, *Chem. Eng. J. (Lausanne, Switz.)*, 2021, **421**, 127831.
- 11 A. Martínez-Lázaro, A. Rico-Zavala, F. I. Espinosa-Lagunes, J. Torres-González,
 L. álvarez-Contreras, M. P. Gurrola, L. G. Arriaga, J. Ledesma-García and E.
 Ortiz-Ortega, Microfluidic Water Splitting Cell Using 3D NiFe₂O₄ Hollow
 Spheres, J. Power Sources, 2019, 412, 505-513.