Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information for

All-Natural Hydrogel Electrolytes by A Universal Strategy for Supercapacitors

Rui Liu, Qianqian Zhang, Fen Ran*

State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, Gansu, P. R. China *Corresponding author: ranfen@lut.edu.cn, or ranfen@163.com

	Film	Bulk	Ionic
ССТ	thickness	resistance	conductivity
	(mm)	$R_b(\Omega)$	(S cm ⁻¹)
TA-0 %	0.680	3.798	1.05×10 ⁻²
TA-2.0 %	0.630	1.614	2.30×10 ⁻²
TA-4.0 %	0.530	1.837	1.70×10 ⁻²
TA-6.0 %	0.538	1.960	1.62×10 ⁻²
TA-8.0 %	0.506	2.080	1.43×10 ⁻²
TA-10.0 %	0.562	2.999	1.10×10 ⁻²
NaCl-1.0 %	0.550	3.146	1.03×10 ⁻²
NaCl-2.0 %	0.541	2.780	1.15×10-2
NaCl-3.0 %	0.523	2.375	1.30×10 ⁻²
NaCl-4.0 %	0.506	2.080	1.43×10 ⁻²
NaCl-5.0 %	0.563	2.624	1.26×10 ⁻²

Table S1 The influences of different variable on membrane properties of hydrogel electrolyte

Figure S1. tensile σ - ε curves of the CCT hydrogel electrolyte membranes.

Figure S2. Electrochemical performances of the CCT hydrogel electrolyte membranes: a) The CV curves of a supercapacitor at different scanning rates; b) The GCD curves of the supercapacitor at the current densities of 0.2-1 A g^{-1} ; c) ragone plots; d) CV curves at 20 mV s^{-1} under different potential windows; e) GCD curves at 0.5 A g^{-1} under different potential windows; f) Capacitance retention of a supercapacitor after 200 charging and discharging cycles.

Figure S3. Electrochemical performances of the CCT hydrogel electrolyte membrane at the potential window of 0-2 V: a) CV curves at different scan rates, and b) GCD curves at different current densities

Figure S4. Electrochemical performances and Physical picture of the CCT hydrogel electrolyte membranes: a) The CV curves of CCT gel-based supercapacitors at different scanning rates; b) The GCD curves of the supercapacitor at the current densities of 0.3-1.2 A g^{-1} ; c) Capacitance retention at different potential windows; d) Physical picture of CCT gel electrolyte membrane before and after being tested under potential window of 0-1.2 V, and e) under potential window of 0-1.8 V

Figure S5. *a-c)* Physical photos of CCT gel-based supercapacitors at different bending angles. d) CV curves of supercapacitor at 20 mV s⁻¹, and e) GCD curves at 0.5 A g⁻¹ bending at different angles