Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Interfacial engineering of a tri-phase CoFe/CoFeO_x/Co-Fe₃O₄ electrocatalyst for promoting oxygen evolution reaction

Chao Lei,^{ab} Jingjuan Chen,^{ab} Lin Lv, ^{*ab} Houzhao Wan,^{ab} Wenfeng Wang,^{ab} Jun Zhang,^{ab} Hanbin

Wang,^{ab} Chundong Wang,^c and Hao Wang^{*ab}

^a Hubei Yangtze Memory Laboratories, Wuhan 430205, PR China.

^b Faculty of Physics and Electronic Science and School of Microelectronics, Hubei University, Wuhan, 430062, PR China.

^c School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, PR China.

^{*} Corresponding authors.

E-mail addresses: estlvlin@hubu.edu.cn (L. Lv); nanoguy@126.com, wangh@hubu.edu.cn (H. Wang).

Fig. S1 The XRD pattern of the sample synthesized without hydrazine hydrate.

Fig. S2 FESEM images of the samples with different Co/Fe atom ratios: (a) 1:0, (b) 0.8:0.2, (c) 0.6:0.4, (d) 0.4:0.6, (e) 0.2:0.8, (f) 0:1.

Fig. S3 (a) a typical TEM of the surrounded Co-Fe₃O₄ nanoparticles in CoFe/CoFeO_x/Co-Fe₃O₄ (0.4: 0.6), (b) HAADF-STEM image of the nanoparticles, and (c) the line-scan profile across the nanoparticles.

Fig. S4 EDS-TEM spectrum of the CoFe/CoFeO_x/Co-Fe₃O₄.

Fig. S5 XPS survey spectrum of the CoFe/CoFeO_x/Co-Fe₃O₄.

Fig. S6 XPS core level spectra of (a) the Co 2p and (b) the Fe 2p for different catalysts.

Fig. S7 CV curve of the CoFe/CoFeOx/Co-Fe₃O₄ (0.6:0.4) at a scan rate of 50 mV s⁻¹.

Fig. S8 The LSV curve of the sample synthesized without hydrazine hydrate.

Fig. S9 The stability test of the CoFe/CoFeO_x/Co-Fe₃O₄ (0.6:0.4) for a long-term electrolysis of 70 h at 50 mA cm⁻².

Fig. S10 XRD pattern of the spent CoFe/CoFeO_x/Co-Fe₃O₄ (0.6:0.4).

Fig. S11 FESEM image of the spent CoFe/CoFeO_x/Co-Fe₃O₄ (0.6:0.4).

Fig. S12 XPS spectra of the spent CoFe/CoFeO_x/Co-Fe₃O₄ (0.6:0.4).

Catalysts	Overpotential (mV) @ 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Electrolyte	Substrate	Year published	Ref.
CoFeV hydroxide	376	26	1 М КОН	Glassy carbon	2021	1
CoFe alloy/N-doped carbon	340	77	1 M KOH	Glassy carbon	2022	2
La-doped CoFe layered double hydroxide	317	125	1 М КОН	Glassy carbon	2021	3
CoFe ₂ O ₄ /carbon nanotube	390	82	0.1 M KOH	Glassy carbon	2021	4
Se-doped Co-Fe sulfide	281	51.8	1 М КОН	Glassy carbon	2021	5
CoFe alloy/N-doped carbon nanosheets	285	39	1 М КОН	Glassy carbon	2021	6
CoFe/S, N co-doped carbon nanotubes	358	259	0.1 M KOH	Glassy carbon	2021	7
N-doped CoFe phosphate	313	58.92	1 М КОН	Glassy carbon	2021	8
Mesoporous Co-Fe oxides	280	68	1 М КОН	Glassy carbon	2021	9
Co ₃ Fe ₁ -layered double hydroxides	314	79.4	1 М КОН	Glassy carbon	2022	10
Tri-phase CoFe/CoFeO _x /Co-Fe ₃ O ₄	291	47.8	1 М КОН	Carbon paper	_	This work

Table S1 OER performance comparison of recently reported CoFe-based electrocatalysts.

References

- 1 W. Adamson, C. Jia, Y. Li and C. Zhao, *Int. J. Hydrogen Energy*, 2021, **46**, 35230-35238.
- 2 G. A. Gebreslase, M. V. Martínez-Huerta, D. Sebastián and M. J. Lázaro, J. Colloid Interface Sci., 2022, 625, 70-82.
- 3 M. Rong, H. Zhong, S. Wang, X. Ma and Z. Cao, *Colloids Surf.*, A, 2021, 625, 126896.
- 4 Q. Huang, C. Li, Y. Tu, Y. Jiang, P. Mei and X. Yan, *Ceram. Int.*, 2021, 47, 1602-1608.
- 5 Y. Song, X. Zhao and Z.-H. Liu, *Electrochim. Acta*, 2021, **374**, 137962.
- 6 S. Wang, H. Wang, C. Huang, P. Ye, X. Luo, J. Ning, Y. Zhong and Y. Hu, *Appl. Catal., B*, 2021, **298**, 120512.
- 7 G. Li, Y. Tang, T. Fu, Y. Xiang, Z. Xiong, Y. Si, C. Guo and Z. Jiang, *Chem. Eng. J.*, 2022, 429, 132174.
- 8 D.-S. Pan, P. Chen, L.-L. Zhou, J.-H. Liu, Z.-H. Guo and J.-L. Song, *J. Power Sources*, 2021, **498**, 229859.
- 9 T. Tang, Q. Zhang, X. Bai, Z. Wang and J. Guan, *Chem. Commun.*, 2021, **57**, 11843-11846.
- Y. Zhang, C. Gan, Q. Jiang, P. Lang, W. Wang and J. Tang, *Mater. Sci. Eng. B*, 2022, 282, 115800.