Electronic Supplementary Information

Two New Ni/Co-MOFs as Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Electrolytes[†]

Yang-Tian Yan ^{a,*}, Lei Ge ^{b,*}, Yun-Long Wu ^a, Wei Cai ^a, Peng-Fei Tang ^a, Wen-Yan Zhang ^c, and Yao-Yu Wang ^c

^a School of Materials Science & Engineering, Xi'an Polytechnic University, Xi'an 710048, P. R. China.

^b Centre for Future Materials, University of Southern Queensland, Springfield, QLD 4300, Australia.

^c Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China.

*To whom correspondence should be addressed. Dr. Yang-Tian Yan School of Materials Science & Engineering, Xi'an Polytechnic University Xi'an 710048, P. R. China. E-mail: yanyt@xpu.edu.cn.

Ni-MOF						
Ni(1)-O(1)#1	2.1275(18)	O(2)-Ni(1)-O(1)#1	95.13(6)			
Ni(1)-O(1)	2.1192(19)	O(2)#2-Ni(1)-O(1)#1	95.13(6)			
Ni(1)-O(2)#2	2.0534(15)	O(2)-Ni(1)-O(1)	90.83(6)			
Ni(1)-O(2)	2.0535(15)	O(2)#2-Ni(1)-O(1)	90.83(6)			
Ni(1)-O(12)#2	2.0209(15)	O(2)#2-Ni(1)-O(2)	85.48(8)			
Ni(1)-O(12)	2.0209(15)	O(12)-Ni(1)-O(1)	87.54(6)			
O(1)-Ni(1)#3	2.1275(18)	O(12)-Ni(1)-O(1)#1	86.81(6)			
O(1)-Ni(1)-O(1)#1	171.88(4)	O(12)-Ni(1)-O(2)#2	91.30(6)			
O(12)#2-Ni(1)-O(1)#1	86.81(6)	O(12)-Ni(1)-O(2)	176.37(6)			
O(12)#2-Ni(1)-O(1)	87.54(6)	O(12)#2-Ni(1)-O(2)	91.30(6)			
O(12)#2-Ni(1)-O(2)#2	176.37(6)	O(12)-Ni(1)-O(12)#2	91.87(9)			
Symmetrical codes: #1 x-1/2, y, -z+5/2; #2 x, -y-1/2, z; #3 x+1/2, y, -z+5/2.						
Co-MOF						
Co(1)-O(1)#1	2.1842(15)	O(2)-Co(1)-O(1)#1	94.45(5)			
Co(1)-O(1)	2.1505(15)	O(2)-Co(1)-O(1)	91.42(5)			
Co(1)-O(2)	2.0819(12)	O(2)-Co(1)-O(2)#2	85.04(7)			
Co(1)-O(2)#2	2.0819(12)	O(7)#2-Co(1)-O(1)	88.16(5)			
Co(1)-O(7)#2	2.0573(12)	O(7)#2-Co(1)-O(1)#1	86.33(5)			
Co(1)-O(7)	2.0573(12)	O(7)-Co(1)-O(1)	88.16(5)			
O(1)-Co(1)#3	2.1842(15)	O(7)-Co(1)-O(1)#1	86.33(5)			
O(1)-Co(1)-O(1)#1	172.03(3)	O(7)#2-Co(1)-O(2)	91.22(5)			
O(2)#2-Co(1)-O(1)	91.42(5)	O(7)#2-Co(1)-O(2)#2 176.22(5)				
O(2)#2-Co(1)-O(1)#1	94.45(5)	O(7)-Co(1)-O(2) 176.22(5)				
O(7)-Co(1)-O(2)#2	91.22(5)	O(7)-Co(1)-O(7)#2	92.52(7)			

 Table S1 Selected bond lengths (Å) and bond angles (°) for Ni-MOF and Co-MOF

Symmetrical codes: #1 x+1/2, y, -z+1/2; #2 x, -y+1/2, z; #3 x-1/2, y, -z+1/2.

Fig. S1. The coordination modes of H_2L^2 -with Ni(II) ion in Ni-MOF and Co-MOF.

Fig.S2. SEM images of (a) Ni-MOF and (b) Co-MOF.

Fig. S3. PXRD patterns of **Ni-MOF** and **Co-MOF** in (a-b) simulated from the X-ray single-crystal structure and experimental samples.

Fig. S4. TGA curves for Ni-MOF and Co-MOF (1-2).

Fig. S5. IR spectra of the as-synthesized Ni-MOF and Co-MOF in (a-b).

Fig. S6. PXRD patterns of **Ni-MOF** and **Co-MOF** in (a-b) simulated from the X-ray single-crystal structure and after durability test.

Turnover Frequency Calculation

The turnover frequency (TOF) was calculated through the equation below:

$$TOF = \frac{j \times A_{geo}}{4 \times F \times n}$$

Where F is the Faraday constant (96, 485C mol⁻¹), and n stands for moles of the total active sites in the targeted materials. In this work, the active sites are assumed to be Co or Ni atoms in the samples. The moles of the Co were estimated through thermos gravimetric analysis.

The Tafel slope was calculated from the Tafel equation (derived from Butler-Volmer equation under high anodic overpotential conditions) in a logarithm form:

$$\eta = b \log(j / j_0)$$

Where η , b, j_0 are overpotential, Tafel slope and overall current density at equilibrium, respectively.

Table S2. Comparison of OER performance for electrocatalysts in this work and some recently reported active electrocatalysts.

Catalyst	J (mA cm ⁻²)	ካ (mV)	Electrolyte	Ref.
Ni-MOF	10	355	1.0 M KOH	This work
Co-MOF	10	394	1.0 M KOH	This work
LiNiCo-OH	10	340	1.0 M KOH	1
NiCo _{2.7} OH	10	350	1.0 M KOH	2
NNU-23	10	365	0.1 M KOH	3
FeCo-MNS	10	298	0.1 M KOH	4
NiCo-UMOFNs	10	250	1.0 M KOH	5
CoxFe _{1-x-} MOF-74	10	280	1.0 M KOH	6
NiFe-MOF/OM-NFH	10	270	1.0 M KOH	7
Co-MOF/NF	10	311	1.0 M KOH	8
CoO _x -ZIF	10	400	1.0 M KOH	9
NCNTFs	10	370	1.0 M KOH	10
Fe1Co ₂ –P/C	10	360	1.0 M KOH	11
A _{2.7} B-MOF-FeCo _{1.6}	10	288	1.0 M KOH	12
Fe–Ni MOF	10	285	1.0 M KOH	13
CTGU-14	10	376	1.0 M KOH	14

Supplementary References

- K. Y. Niu, F. Lin, S. Jung, L. Fang, D. Nordlund, C. C. L. McCrory, T. C. Weng, P. Ercius, M. M. Doeff, H. Zheng. *Nano Lett.* 2015, 15, 2498-2503.
- J. W. Nai, H. J. Yin, T. T. You, L. R. Zheng, J. Zhang, P. X. Wang, Z. Jin, Y. Tian, J. Z. Liu, Z. Y. Tang, L. Guo. *Adv. Energy Mater.* 2015, 5, 1401880.
- X. L. Wang, L. Z. Dong, M. Qiao, Y. J. Tang, J. Liu, Y. Li, S. L. Li, J. X. Su, Y. Q. Lan. Angew. Chem., Int. Ed., 2018, 57, 9660-9664.
- G. Zhan, L. Fan, F. Zhao, Z. Huang, B. Chen, X. Yang, S. F. Zhou. Adv. Funct. Mater., 2019, 29, 1806720.
- S. Zhao, Y. Wang, J. Dong, C. T. He, H. Yin, P. An, K. Zhao, X. Zhang, C. Gao, L. Zhang, J. Lv, J. Wang, J. Zhang, A. M. Khattak, N. A. Khan, Z. Wei, J. Zhang, S. Liu, H. Zhao, Z. Tang. *Nat. Energy*, 2016, 1, 16184.
- 6. X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du, J. Huang, C. Xu. ACS Energy

Lett., 2018, **3**, 2520-2526.

- L. Zhuang, L. Ge, H. Liu, Z. Jiang, Y. Jia, Z. Li, D. Yang, R. K. Hocking, M. Li, L. Zhang, X. Wang, X. Yao, Z. Zhu. *Angew. Chem.*, *Int. Ed.*, 2019, 58, 13565-13571.
- X. P. Zhang, W. D. Sun, H. T. Du, R. M. Kong, F. L. Qu. *Inorg. Chem. Front.*, 2018, 5, 344-347.
- S. Dou, C. L. Dong, Z. Hu, Y. C. Huang, J. L. Chen, L. Tao, D. Yan, D. Chen, S. Shen, S. Chou, S. Wang. *Adv. Funct. Mater.*, 2017, 27, 1702546.
- 10. B. Y. Xia, Y. Yan, N. Li, H. B. Wu, X. W. Lou, X. Wang. Nat. Energy, 2016, 1, 15006.
- 11. W. Hong, M. Kitta, Q. Xu. Small Methods, 2018, 2, 1800214.
- Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H. P. Wang, Y. Fan, Z. W. Wei, Z. Zhang, Z. Ke, G. Li, C. Y. Su. *Adv. Energy Mater.*, 2018, 8, 1801564.
- J. Cheng, X. P. Shen, H. Y. Chen, H. Zhou, P. Chen, Z. Y. Ji, Y. T. Xue, H. B. Zhou G. X. Zhu. *Inorg. Chem.* 2022, **61**, 7095-7102.
- 14. J. W. Tian, Y. P. Wu, Y. S. Li, J. H. Wei, J. W. Yi, S. Li, J. Zhao, D. S. Li. *Inorg. Chem.*, 2019, 58, 5837-5843.