Electronic Supplementary Material (ESI) for New Journal of Chemistry.
This inurnal is © The Roval Societv of Chemistry and the Centre Nation
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

The stereoselective synthesis of cis- and trans-fused pyrrolidine containing bicyclic azepine and oxepine derivatives using aza-Cope rearrangement-Mannich cyclization as a key step

Evgeny R. Lukyanenko ${ }^{[a]}$, Grigory M. Belov ${ }^{[a]}$, Anton M. Novoselov ${ }^{[a]}$, Mikhail S. Nechaev ${ }^{[a, b]}$ and Alexander V. Kurkin ${ }^{*[a]}$
[a] Department of Chemistry, Lomonosov Moscow State University, 1/3 Leninsky Gory, Moscow 119991, Russia
[b] A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Prospect 29, Moscow, Russian Federation
*e-mail: kurkin@direction.chem.msu.ru

Index of contents

No	Contents	Page No
I.	General information	S2
II.	General procedures	S3
III.	Analytical data of the synthesized derivatives	S7
IV.	X-ray crystallography data	S228
V.	Copies of Chromatograms	S262

I. General information

All materials were obtained from commercial suppliers and used without further purification. NMR spectra were recorded on Bruker Avance 400 (400 MHz for ${ }^{1} \mathrm{H}$ and 100 MHz for ${ }^{13} \mathrm{C}$) spectrometer at room temperature if not specified otherwise; the chemical shifts δ were measured in ppm with respect to solvent $\left(\mathrm{CDCl}_{3}:{ }^{1} \mathrm{H}: \delta=7.26 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta=77.0 \mathrm{ppm}\right.$; DMSO- $\left.\mathrm{d}_{6}:{ }^{1} \mathrm{H}: \delta=2.50 \mathrm{ppm},{ }^{13} \mathrm{C}: \delta=39.5 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F}$ NMR spectra were recorded at 470 MHz with fluorobenzene as an internal reference ($\delta=-112.96 \mathrm{ppm}$ in CDCl_{3}). Splitting patterns are designated as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublets), and br (broad). Coupling constants (J) are given in Hz. The structures of synthesized compounds were elucidated with the aid of 1D NMR (${ }^{1} \mathrm{H}$, and ${ }^{13} \mathrm{C}$) and 2D NMR (COSY ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$, HSQC and $\mathrm{HMBC}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$, and NOESY ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$) spectroscopies. IR spectra were recorded on a Thermo Nicolet IR 200 FT-IR spectrometer. Registration of spectra was carried out at a resolution of $4 \mathrm{~cm}^{-1}$, and the number of scans was 10 . Samples were placed on the working surface of the internal reflection (ATR) element from ZnSe with the angle of incidence of 45°. High-resolution mass spectra were recorded on a Bruker microTOF-Q spectrometer with electrospray ionization (ESI). The specific rotation was measured on Perkin-Elmer 241 and Jasco DIP-360 polarimeters at 589 nm in cells with path length 5 and 10 cm . Methylene chloride, chloroform, and methanol were used as the solvent for measurement of the specific rotation. The GC/MS study was carried out using an Agilent 1200 gas-liquid chromatograph with fluorimetric and diode-matrix detectors, a $4.6 \times 250 \mathrm{~mm}$ Chiralcel OD-H or Chiralpak AD-RH columns, detection at UV 250 nm , and water-acetonitrile in various ratios as the mobile phase. The flow rate was $1 \mathrm{ml} / \mathrm{min}$. Analytical thin-layer chromatography (TLC) was carried out using percolated aluminum sheets of silica gel 60 (F_{254}). The visualization of the TLC plates was done by a UV lamp (365 nm). Column chromatography was performed on a silica gel 60 (230-400 mesh). Melting points (mp) were determined using Electrothermal 9100 and SMP- 20 capillary melting point apparatus. All the reactions were carried out using freshly distilled and dry solvents from solvent stills. All reactions were performed on a gram-scale.

II. General procedures

General procedure for the synthesis of products 9-10 (GP 1)

To the solution of phenylacetylene (0.16 mol , 1.6 eq) in THF (150 ml) at $-78^{\circ} \mathrm{C} 2.5 \mathrm{M} \mathrm{BuLi}$ in hexane ($0.15 \mathrm{~mol}, 1.5$ equiv.) was added dropwise over 10 min , the reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and warmed to complete dissolution of the precipitate. Then, using a cannula, the solution was transferred to cooled to $-78^{\circ} \mathrm{C}$ suspension of $\mathrm{CeCl}_{3}(81.3 \mathrm{mmol}, 0.81 \mathrm{eq})$ in $\mathrm{THF}(170 \mathrm{ml})$, the mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and a solution of ketone (0.10 mmol) in THF (60 ml) was added. The reaction mixture was stirred 1.5 h at $-78^{\circ} \mathrm{C}$, poured into $0.15 \mathrm{M} \mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(1 \mathrm{~L})$ and extracted with hexane-DCM 4:1 mixture ($2 \times 500 \mathrm{~mL}$). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated in vacuo. Removing the excess of phenylacetylene in an oil pump vacuum $\left(40-50^{\circ} \mathrm{C}, 0.05 \mathrm{~mm} \mathrm{Hg}\right)$ and used in the next stage without purification.

Analytically pure sample of 9 was obtained by chromatographic purification $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc gradient from $4: 1: 0.5$ to $\left.4: 1: 2.5\right)$. Rf 0.5 (hexane - EtOAc 2: 1).

Analytically pure sample of $\mathbf{1 0}$ was obtained by chromatographic purification $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc gradient from 2: 1:0.3 to $\left.2: 1: 1.5\right)$. Rf 0.45 (hexane - EtOAc 2: 1).

General procedure for the synthesis of products 11-12 (GP 2)

To a solution of the alcohol ($\sim 0.10 \mathrm{~mol}$) in toluene (250 ml) at $-30^{\circ} \mathrm{C} \mathrm{Et}_{3} \mathrm{~N}(0.30 \mathrm{~mol}, 3 \mathrm{eq})$ was added and then $\mathrm{MsCl}(0.12 \mathrm{~mol}, 1.2 \mathrm{eq})$ was added dropwise over 5 min . The mixture was stirred for 30 min at $-30^{\circ} \mathrm{C}$, the cooling bath was removed and the reaction was stirred at room temperature for an additional 24 h . The mixture was then treated with $5 \% \mathrm{H}_{2} \mathrm{SO}_{4}(350 \mathrm{ml})$, the organic layer was separated and the aqueous was extracted with a hexane-DCM 10: 1 mixture (200 ml). Organic extracts were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated in vacuo. The residue was purified by using chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 10:1:1) to afford the desired products.

General procedure for the synthesis of products 14-16 (GP 3)

To a solution of alkene (49.5 mmol) in benzene (500 ml) $\mathrm{Na}_{2} \mathrm{HPO}_{4}(296 \mathrm{mmol}, 6 \mathrm{eq})$ and $70 \% \mathrm{~m}-\mathrm{CPBA}(60 \mathrm{mmol}, 1.2$ eq) were added and the mixture was vigorously stirred for 1 h . Then additional portion of $70 \% \mathrm{~m}$-CPBA ($25 \mathrm{mmol}, 0.5 \mathrm{eq}$) was added and the reaction was stirred for an additional 2 h
and left overnight. The mixture was then thoroughly washed twice with a solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(30 \mathrm{~g})$ and $\mathrm{Na}_{2} \mathrm{SO}_{3}(15 \mathrm{~g})$ in water (500 ml), the organic layer was separated and the aqueous was combined and extracted with hexane-DCM 4: 1 mixture (250 ml). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated in vacuo to afford the desired products which were used without further purification on the next step.

Analytically pure sample of $\mathbf{1 4}$ was obtained by chromatographic purification $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 10:1:1).
Analytically pure sample of 15 was obtained by chromatographic purification (SiO_{2}, hexane-DCM-EtOAc 10: 1: 1.5). Rf 0.40 (hexane - EtOAc 4: 1).
Analytically pure sample of $\mathbf{1 6}$ was obtained by chromatographic purification $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 10:1:1). Rf 0.4 (hexane - EtOAc 4: 1)

General procedure for the synthesis of products 17-19 (GP 4)

The emulsion of epoxide (14-16) (50 mmol) and amine ($150 \mathrm{mmol}, 3 \mathrm{eq}$) in water (35 mL) was vigorously stirred at $45^{\circ} \mathrm{C}$ for 72 h . Then water (200 ml) was added and the reaction was extracted with hexane-DCM 4:1 mixture ($2 \times 200 \mathrm{ml}$). The organic extracts were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated in vacuo. Chromatographic purification of the residue (SiO_{2}, hexane-DCM-EtOAc 10: 1: 2) to afford amino propargylic alcohols 17-19 as bright to dark yellow/orange oils. Amino propargylic alcohols $\mathbf{1 7}$ and $\mathbf{1 8}$ contained a small amount of regioisomers 17a and 18a in 8 to 13% yields.

Analytically pure sample of $\mathbf{1 7}$ was obtained by crystallization of the hydrobromide salt from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ mixture. 17: Rf (free base) 0.4 (hexane EtOAc 4: 1)

General procedure for the synthesis of products 20-22 (GP 5)

$\operatorname{RedAl}(30 \mathrm{ml}$ of 70% solution in toluene, $105 \mathrm{mmol}, 3.5 \mathrm{eq})$ was dissolved in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$, the mixture was cooled to $-10^{\circ} \mathrm{C}$ and a solution of amino propargylic (29.6 mmol) in $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ was added dropwise in a 10 min period of time. The reaction was stirred at $-10^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}$ for 2 h , cooled to $20^{\circ} \mathrm{C}$ and water $(4 \mathrm{ml}), 15 \%$ aq. $\mathrm{KOH}(6 \mathrm{ml})$ and water $(4 \mathrm{ml})$ were added dropwise successively under vigorous stirring. Cooling bath was removed and the mixture was allowed to warm to room temperature. The clear solution was decanted and the pasty precipitate was thoroughly washed with $\mathrm{Et}_{2} \mathrm{O}(100$ $\mathrm{ml})$ with vigorous stirring. The organic solutions were combined, washed with water $(100 \mathrm{ml})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated in vacuo. The residue was dissolved in $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}(1: 4)$ mixture $(100 \mathrm{ml})$, the solution was cooled to $0^{\circ} \mathrm{C}$, and 7 M aq . $\mathrm{HBr}(4.5 \mathrm{ml})$ was added dropwise under vigorous stirring until $\mathrm{pH}=5$. After initial precipitation had completed, $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$ was added and the mixture was left at $-30^{\circ} \mathrm{C}$ overnight. The precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to afford hydrobromides 20, 21, and 22.

III. Analytical data of the synthesized derivatives

Tert-butyl 4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (9)

Compound 9 was synthesized according to the GP 1 from ketone $3(20 \mathrm{~g}, 0.10 \mathrm{~mol})$ affording $29.54 \mathrm{~g}(98 \%)$ as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.74-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.95-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 3.33$ (ddd, $J=13.4,9.7,3.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.84 (br. s., 2 H), $7.28-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}), \delta(\mathrm{ppm}): 28.4$ (3 C), 39.1 (2 C), 40.7 (br.), 41.2 (br.), 67.2, 79.7, 85.3, 91.0, 122.2, 128.3 (2 C), 128.6, 131.7 (2 C), 154.7. IR $v_{\max },(\mathrm{KBr}): 3207$ (br.), 2960, 2931, 2856, 2216 (w.), 1697, 1421, 1365, 1277, 1248, 1173, 1144, 1068, 754, $690 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}^{+}: 324.1570$, found: 324.1570.

4-(Phenylethynyl)tetrahydro-2H-pyran-4-ol (10)

Compound 10 was synthesized according to the GP 1 from ketone $4(20 \mathrm{~g}, 100.0 \mathrm{mmol})$ affording 20.85 g (97%) as a yellow solid; m. p. $54-56^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.91(\mathrm{ddd}, J=12.9,9.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.00-2.09(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{ddd}, J=$ $11.9,9.2,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.97(\mathrm{dt}, J=11.9,4.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta$ (ppm):40.0 (2 C), 64.9 (2 C), 66.2, 85.1, 91.2, 122.3, 128.3 (2 C), 128.5, 131.6 (2 C). IR $v_{\max },(\mathrm{KBr}): 3356,2962,2933,2870,2218$ (w.), 1338, 1290, 1230, 1153, 1095, 1084, 987, 842, 760, $696 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}{ }^{+}: 203.1067$, found: 203.1054 .

Tert-butyl 4-(phenylethynyl)-5,6-dihydropyridine-1(2H)-carboxylate (11)

Compound 11 was synthesized according to the GP 2 from alcohol 9 ($30.14 \mathrm{~g}, 100.0 \mathrm{mmol}$) affording $26.06 \mathrm{~g}(92 \%)$ as a yellow oil; Rf 0.6 (hexane - EtOAc 4: 1). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.34$ (br. s., 2 H$), 3.54$ (t, $J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.10(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz), $\delta(\mathrm{ppm}): 28.4$ (3 C), 29.2, (39.3 (br.), 40.6 (br.)), (43.3 (br.), 43.8 (br.)), 79.8, 88.5, 89.2, 119.4 (br.), 123.1, $128.1,128.2$ (2 C), (130.3 (br.), 130.8 (br.)), 131.4 (2 C), 154.7. IR $v_{\max },(\mathrm{KBr}): 2976,2931,2249$ (w.), 1697, 1419, 1365, $1273,1240,1169,957,912,756,733,690 \mathrm{~cm}^{-1} . \operatorname{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}: 284.1645$, found: 284.1649 .

4-(Phenylethynyl)-3,6-dihydro-2H-pyran (12)

Compound 12 was synthesized according to the GP 2 from alcohol 10 ($20.22 \mathrm{~g}, 100.0 \mathrm{mmol}$) affording 17.13 g (93%) as a yellow oil; Rf 0.55 (hexane - EtOAc 4: 1). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 2.32-2.39(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{q}$, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.15-6.20(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 29.1,63.9$, $65.5,88.4,89.1,118.5,123.2,128.1,128.3$ (2 C), 131.5 (2 C), 132.4. IR $v_{\max },(\mathrm{KBr}): 3057,2966,2858,2249$ (w.), 2202 (w.), 1720 , 1491, 1383, 1132, 1070, 910, 758, 733, $690 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{O}: 183.0804$, found: 183.0804 .

Tert-butyl 3-(phenylethynyl)-5,6-dihydropyridine-1(2H)-carboxylate (13)

A solution of tert-butyl 3-bromo-5,6-dihydropyridine-1 $(2 \mathrm{H})$-carboxylate ${ }^{1}(\mathbf{5})(15.7 \mathrm{~g}, 57.3 \mathrm{mmol})$, phenylacetylene $(9.2$ $\mathrm{g}, 90 \mathrm{mmol}, 1.5 \mathrm{eq})$, pyrrolidine $(12.8 \mathrm{~g}, 180 \mathrm{mmol}, 3 \mathrm{eq})$, $\mathrm{CuI}(1.15 \mathrm{~g}, 6.05 \mathrm{mmol}, 0.1 \mathrm{eq})$ and $\mathrm{Pd}^{2}\left(\mathrm{PPh}_{3}\right)_{4}(1.73 \mathrm{~g}, 1.50$ $\mathrm{mmol}, 0.025 \mathrm{eq})$ in $\mathrm{CH}_{3} \mathrm{CN}(150 \mathrm{ml})$ was stirred for 2 h at $70^{\circ} \mathrm{C}$. Then additional portion of phenylacetylene ($3 \mathrm{~g}, 29.4$ $\mathrm{mmol}, 0.5 \mathrm{eq}$) was added and the reaction was stirred 2 h at $70^{\circ} \mathrm{C}$. The mixture was cooled to room temperature, poured into 2% aq $\mathrm{HCl}(500 \mathrm{ml})$ and extracted with hexane-DCM 3: 1 mixture ($2 \times 200 \mathrm{ml}$). Organic extracts were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were evaporated in vacuo. The residue was purified by column chromatography (SiO_{2}, hexane-DCM-EtOAc 10: 1: 1) to afford 13 ($16.3 \mathrm{~g}, 96 \%$). Rf 0.45 (hexane-EtOAc 10: 1), m. p. $58-61^{\mathrm{O}} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.49(\mathrm{~s}, 9 \mathrm{H}), 2.26$ (br. s., 2 H), $3.50(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.03(\mathrm{br} . \mathrm{s} ., 2$ H), 6.29 (br. s., 1 H), $7.25-7.36$ (m, 3 H), $7.39-7.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 25.4,28.4$ (3 C), (38.8 (br.), 40.2 (br.)), (45.7 (br.), 46.0 (br.)), 79.9, 87.6, 88.6 (br.), 118.9 (br.), 123.0, 128.2, 128.3 (2 C), 131.5 (2 C), 132.8 (br.), 154.5. IR $v_{\text {max }}$, (KBr): 2978, 2929,2249 (w.), 1697, $1419,1365,1242,1169,1122,910,756,733,690 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}: 306.1465$, found: 306.1463 .

[^0]
Tert-butyl 6-(phenylethynyl)-7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (14).

Compound 14 was synthesized according to the GP 3 from alkene $11(15.15 \mathrm{~g}, 53.5 \mathrm{mmol})$ affording 15.85 g (98%) as a yellow oil; Rf 0.45 (hexane - EtOAc 4: 1), which was used without further purification on the next step. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}), \delta(\mathrm{ppm}): 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.13-2.44(\mathrm{~m}+\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 3.03-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.79$ (br. m., 3 H), $3.85-4.20$ (br. m., 1 H), $7.28-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 28.3(3 \mathrm{C}),(29.4$ (br.), 29.5 (br.)), (36.7 (br.), 37.8 (br.)), (41.4 (br.), 42.1 (br.)), 49.7 (br.), (57.8 (br.), 58.1 (br.)), 80.0, 83.2, 87.3, 121.7, 128.2 (2 C), 128.8, 131.8 (2 C), 154.6. IR $v_{\max },(\mathrm{KBr}): 2978,2931,2251$ (w.), 1697, 1691, 1425, 1367, 1248, 1171, 1161, 1119, $912,733 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{Na}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{3}: 322.1414$, found: 322.1417.

6-(Phenylethynyl)-3,7-dioxabicyclo[4.1.0]heptane (15)

Compound 15 was synthesized according to the GP 3 from alkene $12(15.02 \mathrm{~g}, 81.5 \mathrm{mmol})$ affording $16.0 \mathrm{~g}(98 \%)$ as a yellow oil; Rf 0.40 (hexane - EtOAc 4: 1), which was used without further purification on the next step. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 2.20$ - $2.36(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $13.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 39.9,48.7,58.2,61.1,64.4,83.2$, $87.4,121.8,128.3(2 \mathrm{C}), 128.8,131.8(2 \mathrm{C})$. IR $v_{\max },(\mathrm{KBr}): 2958,2850,2231$ (w.), 1491, 1298, 1242, 1128, 870, 758, 733, 692 cm^{-1}. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}: 210.0910$, found: 210.0909.

Tert-butyl 1-(phenylethynyl)-7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (16).

Compound 16 was synthesized according to the GP 3 from alkene $13(15.02 \mathrm{~g}, 38.9 \mathrm{mmol})$ affording $11.4 \mathrm{~g}(99 \%)$ as a yellow oil; Rf 0.40 (hexane - EtOAc 4: 1), which was used without further purification on the next step. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, $\left.50^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.92-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.16(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H})$, 3.92 (br. d., $J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl $\mathrm{N}_{3}, 100$ $\mathrm{MHz}, 50^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm}): 23.7$ (br.), 28.4 (3 C), 37.6 (br.), 46.6 (br.), 49.3, 59.0, 80.2, 84.2, 86.5, 122.0, 128.3 (2 C), 128.8, 131.9 (2 C), 154.8. IR $v_{\max },(\mathrm{KBr}): 2976,2927,2231$ (w.), 1697, 1421, 1367, 1248, 1171, 1155, 758, $692 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z\left[M+\mathrm{Na}{ }^{+} \mathrm{calcd}\right.$ for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}: 322.1414$, found: 322.1424 .
(3RS,4SR)-Tert-butyl 3-(benzylamino)-4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (17).

Compound 17 was synthesized according to the GP 4 from epoxide $14(14.92 \mathrm{~g}, 49.9 \mathrm{mmol})$ affording $15.2 \mathrm{~g}(75 \%)$ as a yellow oil; Rf(free base) 0.4 (hexane - EtOAc 4: 1). Hydrobromide: m. p. $198-201^{\circ} \mathrm{C}\left(\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{td}, J=12.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 2.86-$ 3.14 (br. m., 2 H), 3.94 (br. d., $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.08-4.55$ (br. m., 3 H), 6.69 (s, 1 H), $7.38-7.54$ (m, 6 H), $7.56-7.71$ (m, 4 H), 9.04 (br. s., 1 H), 9.38 (br. s., 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), δ (ppm): 27.9 (3 C), 40.6 (br.), 41.8 (br.), 49.0, 59.5, 68.4, 79.9, 86.0, 88.4, 121.3, 128.6 (2 C), $128.8(2 \mathrm{C}), 129.3,129.4,130.5(2 \mathrm{C}), 130.7,131.9$ (2 C), 153.4 (br.). One aliphatic signal was lost because of broadening or overlapping with the signals of the solvent. IR $v_{\max },(\mathrm{KBr}): 3247$ (br.) 2974, 2931, 2816, 2227 (w.), 1697, 1566, 1458, 1444, 1423, 1412, 1275, 1248, 1189, 1151, 1066, 1057, 761, 748, $694 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}$: 407.2329, found: 407.2324 .

(3SR,4RS)-tert-Butyl 4-(benzylamino)-3-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (17a).

Yellow solid; 1.6 g , yield 8%; m. p. $106-108^{\circ} \mathrm{C}$; Rf 0.25 (hexane - EtOAc $4: 1$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})$: $1.47(\mathrm{~s}, 9 \mathrm{H}), 1.62(\mathrm{td}, J=13.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-2.50(\mathrm{~m}+\mathrm{br} . \mathrm{s} ., 3 \mathrm{H}), 2.95-3.25(\mathrm{br} . \mathrm{m} ., 2 \mathrm{H}), 3.49-3.62(\mathrm{~m}, 1$ H), $3.89(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-4.30(\mathrm{br} . \mathrm{s} .+\mathrm{d}, J=12.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.42(\mathrm{~m}, 7 \mathrm{H}), 7.47$ $-7.53(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 28.3$ (3 C), (34.8 (br.), 34.9 (br.)), (40.2 (br.), 41.2 (br.)), (46.3 (br.), 47.1 (br.)), $47.9,60.4$ (br.), 72.6 (br.), 79.9, 87.3 (br.), 88.6 (br.), 122.4 (br.), 127.0, 128.30 (2 C), 128.34 (2 C), 128.4 (2 C), 128.5 (br.), 131.8 (2 C), 140.3 (br.), 154.6. IR $v_{\max }$ (ZnSe): 3379 (br.), 2974, 2929, 2868, 2233 (w.), 1693, 1672, 1425, 1365, 1275, 1248, 1171, 1149, 1070, 881, 756, $692 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}: 407.2329$, found: 407.2324.

(3RS,4SR)-3-(Benzylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (18)

Compound 18 was synthesized according to the GP 4 from epoxide $15(16.23 \mathrm{~g}, 81.7 \mathrm{mmol})$ affording $16.2 \mathrm{~g}(65 \%)$ as a yellow solid; m. p. 115-117 ${ }^{\circ} \mathrm{C}$; Rf 0.45 (hexane - EtOAc 7: 3). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 0.90-2.20(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 1.94$ (td, J $=12.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{dt}, J=13.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-4.31(\mathrm{br} . \mathrm{s} .$, $1 \mathrm{H}), 3.77(\mathrm{td}, J=12.1,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=11.3$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.41(\mathrm{~m}, 8 \mathrm{H}), 7.42-7.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 38.8,51.1,62.6,65.6,68.3,70.6$, 87.2, 88.4, 122.2, 127.3, 128.0 (2 C), 128.3 (2 C), 128.5 (2 C), 128.6, 131.7 (2 C), 140.1. IR $v_{\max }$, (KBr): 3406 (br.), 3060, 2972, 2868, 2844,2220 (w.), $1491,1444,1340,1119,1090,976,752,733,704,692,557 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}: 308.1645$, found: 308.1639 .

(3RS,4RS)-4-(benzylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-3-ol (18a)

Yellow solid; 3.2 g , yield 13%; mp $122-124^{\circ} \mathrm{C}$; Rf 0.25 (hexane - EtOAc 7: 3). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.82$ (ddd, $J=13.2,11.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ (br. s., 2 H), 2.18 (dt, $J=13.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (dd, $J=9.7$, $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{td}, J=11.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.97(\mathrm{~m}, 3 \mathrm{H}), 4.06(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.44$ $(\mathrm{m}, 7 \mathrm{H}), 7.47-7.55(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 36.1,47.8,59.9,64.8,68.8,72.4,87.6,88.8,122.3,127.1$, 128.4 (4C), 128.5 (2 C), 128.6, 131.8 (2 C), 140.3. IR $v_{\text {max }}$ (ZnSe): 3159, 2968, 2904, 2854, 2360, 2328, 1689, 1489, 1450, 1429, 1128, 1088, 1020, 982, 883, 752, $692 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}: 308.1645$, found: 308.1649.

(3SR,4SR)-Tert-butyl 4-(benzylamino)-3-hydroxy-3-(phenylethynyl)piperidine-1-carboxylate (19)

The reaction was performed according to slightly modified conditions of the GP 4. A solution of epoxide $\mathbf{1 6}$ (9.88 $\mathrm{g}, 33$ mmol), benzylamine ($7 \mathrm{~g}, 65.4 \mathrm{mmol}, 2 \mathrm{eq}$) and $\mathrm{LiClO}_{4}(5.3 \mathrm{~g}, 50 \mathrm{mmol}, 1.5 \mathrm{eq})$ in $\mathrm{CH}_{3} \mathrm{CN}(25 \mathrm{ml})$ was stirred at $45^{\circ} \mathrm{C}$ for 24 h . Then the solution was cooled to room temperature, poured into water $(100 \mathrm{ml})$ and extracted with hexane-DCM 3: 1 mixture ($2 \times 100 \mathrm{ml}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. After purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 3: 1: 1.5) $\mathbf{1 6}(6.70 \mathrm{~g}, 50 \%)$ was obtained. Rf 0.45 (hexane-EtOAc 7: 3), mp $118-120^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.40(\mathrm{~s}+\mathrm{br} . \mathrm{s} ., 10 \mathrm{H}), 1.58(\mathrm{qd}, J=7.9,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{t}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1$ H), 4.14 (br. s., 1 H), $4.38(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.50(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 0.75 \mathrm{H}), 4.58$ (br. s., 0.5 H), $7.23-7.46$ (m, 10 H$).{ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{CDCl} 3,100$ $\mathrm{MHz}), \delta(\mathrm{ppm}): 28.3(3 \mathrm{C}), 28.4,42.7,50.4,53.1,63.9,70.1,79.8,86.3,88.2,122.3,127.2,128.06$ (2 C), 128.14 (2 C), 128.4, 128.5 (2 C), 131.7 (2 C), 139.9, 154.5. IR $v_{\max },(\mathrm{KBr}): 3425$ (br.), 2976, 2920, 2891, 2852, 1676, 1460, 1435, 1363, 1236, 1153, 760, $700 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$ for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}$: 407.2329, found: 407.2325 .

20 was prepared from $\mathbf{1 7}(12 \mathrm{~g}, 29.6 \mathrm{mmol})$ according to the GP 5 procedure. White solid; 12.3 g , yield 85%; mp 219 $223^{\circ} \mathrm{C}(\mathrm{EtOH}) ;$ Rf (base) 0.3 (hexane - EtOAc 4: 1). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.64(\mathrm{td}, J$ $=12.3,3.8 \mathrm{~Hz}, 1 \mathrm{H}$), 1.85 (br. d., $J=12.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.84 (br. s., 1 H), 3.22 (br. s., 2 H), 3.76 (br. s., 1 H), $4.00-4.40$ (br. s. $+\mathrm{s}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}$), $7.44(\mathrm{~s}, 3 \mathrm{H}), 7.53-7.66(\mathrm{~m}, 4 \mathrm{H}), 8.47$ (br. s., 1 H), 9.09 (br. s., 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 28.0(3 \mathrm{C}), 38.2,40.7(\mathrm{br}$), $48.5,59.9,70.9,79.7,126.7,127.1$ (2 C), 127.8, 128.5 (2 C), 128.7 (2 C), 129.2, 130.4 (br., 2 C), 130.8, 132.0, 136.4, 153.6 (br.). One aliphatic signal was lost because of broadening or overlapping with the signals of the solvent. IR $v_{\max }$, (KBr): 3340 (br.), 2966, 2922, 2798, 1684, 1452, 1421, 1248, 1163, 974, 748, $698 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{NO}_{2}: 409.2486$, found: 409.2487.

(3RS,4SR)-3-(Benzylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrobromide (21)

White solid; 10.4 g , yield 82%; mp $213-217^{\circ} \mathrm{C}\left(\mathrm{EtOH}^{-E t} 2 \mathrm{O}\right) ; \mathrm{Rf}$ (base) 0.5 (hexane - EtOAc 6: 4). 21 was prepared from 18 HBr ($10 \mathrm{~g}, 32.6 \mathrm{mmol}$) according to the GP $\mathbf{5}$ procedure with minor modifications. $\mathbf{1 8}$ was added to the reaction mixture as undissolved powder portionwise and 21 was precipitated from $\mathrm{EtOH}_{-\mathrm{Et}_{2} \mathrm{O}} 1: 6$ mixture. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$), δ (ppm): 1.70-1.83 (m, 1 H), 1.88-2.01 (m, 1 H), 2.94 (br. s., 1 H), $3.64-3.82(\mathrm{~m}, 3 \mathrm{H}), 4.06$ (dd, $J=11.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (br. s., 2 H), 5.79 (s, 1 H), 6.69 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) 7.34-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.57(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H})$, 8.45 (br. s., 1 H), 9.13 (br. s., 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), δ (ppm): 37.8 (br.), 48.9, 60.0, 62.7, 64.0, 69.7, 127.0 (2 C), 127.9 (n. + br. 2 C), 128.5 (2 C), 128.8 (2 C), 129.1, 130.4 (2 C), 131.1, 131.7, 136.3. IR $v_{\text {max }}$, (KBr): 3315, 2958, 2924, 2871, 2794, 1566, 1417, 1398, 1130, 1051, 980, 748, $692 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2}: 310.1802$, found: 310.1799.

White solid; 5.18 g , yield 86%; mp $240-250^{\circ} \mathrm{C}$ (dec.); Rf (base) 0.55 (hexane-EtOAc 1:1). 22 was prepared from 19 (5 $\mathrm{g}, 12.3 \mathrm{mmol}$) according to the GP 5 procedure with minor modifications. 19 was added as undissolved powder portionwise and 22 was precipitated from $\mathrm{EtOH}_{-\mathrm{Et}_{2} \mathrm{O}} 1: 10$ mixture. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-d_{6}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.35(\mathrm{~s}, 9$ H), 1.74 (qd, $J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.15 (br. d., $J=12.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.68-2.90 (br. m., 2 H), 3.06-3.17 (m, 1 H), 4.00 (d, $J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.56-7.65(\mathrm{~m}, 2 \mathrm{H}), 8.39$ (br. s., 1 H$), 8.99$ (br. s., 1 H$).{ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 24.2$, 27.7 (3 C), 41.3 (br.), 48.2, 53.3 (br.), 62.0, 70.7, 79.1, 125.9, 126.4 (2 C), 127.7, 128.3 (2 C), 128.5 (2 C), 128.8, 130.1 (2 C), 131.0, $131.5,136.2,153.1$. IR $v_{\text {max }}$, (KBr): 3294 (br.), 2968, 2800, 2703, 1685, 1571, 1458, 1433, 1365, 1248, 1159, 744, $688 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}$: 409.2486, found: 409.2485.

(3RS,3aSR,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23a)

To a solution of $\mathbf{2 0}(10.0 \mathrm{~g}, 24.5 \mathrm{mmol})$ in DMSO (120 ml) 37% formaldehyde solution ($3.6 \mathrm{~mL}, 48.8 \mathrm{mmol}, 2 \mathrm{eq}$) and $(+)$-10-camphorsulfonic acid $(2.8 \mathrm{~g}, 12.1 \mathrm{mmol}, 0.5 \mathrm{eq})$ were added and the reaction was stirred for 24 h at $40^{\circ} \mathrm{C}$. Then the solution was poured into 10% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(400 \mathrm{ml})$ and extracted with hexane-DCM $3: 1$ mixture (2 x 300 ml). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-Et $\left.2 \mathrm{O} 3: 1: 0.6\right)$ to afford $23 \mathrm{a}(7.4 \mathrm{~g}, 62 \%)$. Rf $0.3(\mathrm{EtOAc})$, white solid, $\mathrm{mp} 110-112^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.48(\mathrm{~s}, 9 \mathrm{H}), 2.41(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{td}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.98(\mathrm{~m}, 3 \mathrm{H}), 3.05-3.20(\mathrm{~m}, 1.5 \mathrm{H})$, $3.23-3.44(\mathrm{~m}, 2.5 \mathrm{H}), 3.87-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.74(\mathrm{dd}, J=13.5,2.8 \mathrm{~Hz}$,
$0.6 \mathrm{H}), 7.17(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.41(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 28.3(3 \mathrm{C}), 40.6,(42.4,42.8),(43.09,43.13),(52.0,53.1)$, $(58.0,58.1),(60.8,61.0),(67.1,67.3),(67.7,67.9),(80.27,80.30), 126.3,(127.0,127.2), 127.4(2 \mathrm{C}),(128.26,128.3)(2 \mathrm{C}),(128.45,128.48)(2 \mathrm{C}), 128.52$ (2C), 138.4, 145.7, (154.1, 154.4), (207.4, 207.5). IR $v_{\text {max }},(\mathrm{ZnSe}): 2970,2922,1695,1464,1410,1367,1340,1257,1217,1167,1142,1078,700 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}: 421.2486$, found: 421.2486.
(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b)

To a solution of $\mathbf{2 0}(5.0 \mathrm{~g}, 12.3 \mathrm{mmol})$ in THF $(100 \mathrm{ml}) 37 \%$ formaldehyde solution $(2 \mathrm{~g}, 24.5 \mathrm{mmol}, 2 \mathrm{eq})$ and (+)-10camphorsulfonic acid ($1.4 \mathrm{~g}, 6.0 \mathrm{mmol}, 0.5 \mathrm{eq}$) were added and the reaction mixture was stirred for 24 h . Then the solution was evaporated in vacuo and the residue was treated with 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$ and extracted with DCM $(2 \times 50 \mathrm{ml})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to a volume of $\sim 15 \mathrm{ml}$. Then MTBE (75 ml) was added and the solvents were removed in vacuo to a volume of $\sim 40 \mathrm{ml}$. To the remaining solution an additional portion of MTBE (70 ml) was added and the mixture was maintained at room temperature until the initial crystallization was completed and then at $-30^{\circ} \mathrm{C}$ overnight. The precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}-$ hexane $1: 1 \mathrm{mixture}$ and dried to afford $\mathbf{2 3 b}(2.84 \mathrm{~g}, 55 \%$). Rf 0.45 (hexane-EtOAc 4: 1), white solid, mp $176-178^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.52+1.53(\mathrm{~s}+\mathrm{s}, 9 \mathrm{H}), 2.43-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.64$ $(\mathrm{dd}, J=14.7,10.3 \mathrm{~Hz}, 1.3 \mathrm{H}), 2.73(\mathrm{td}, J=11.7,4.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.00(\mathrm{t}, J=13.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.09-3.24(\mathrm{~m}, 1.4 \mathrm{H}), 3.25-3.55(\mathrm{~m}, 3 \mathrm{H}), 3.79-3.89(\mathrm{~m}$, $1 \mathrm{H}), 4.08(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 4.19-4.35(\mathrm{~m}, 1.3 \mathrm{H}), 7.15-7.38(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl} \mathrm{N}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 28.5$ (3 C), 42.4, (44.8, 45.3), (45.6, 45.7), (49.5, 50.4), (57.8, 58.2), 60.3, 61.5, 62.7, 80.3, 126.6, (126.9, 127.2), 127.8 (2 C), 128.1, 128.3, 128.4 (2 C), 128.6, 128.9, (138.3, 138.6), 140.9, 154.6, (207.9, 208.0). IR $v_{\max }$, (ZnSe): 2974, 2927, 2860, 2812, 1699, 1454, 1417, 1367, 1240, 1161, 1113, 1097, 754, 700 cm^{-1}. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}: 421.2486$, found: 421.2485.

$\mathbf{2 4 b}(5.10 \mathrm{~g}, 82 \%)$ was prepared from $21(6.0 \mathrm{~g}, 19.4 \mathrm{mmol})$ according to the procedure for $\mathbf{2 3 b}$. Rf 0.4 hexane-EtOAc $2: 1)$, mp $167-168^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 2.55(\mathrm{dd}, J=11.4,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddd}, J=11.9,4.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (ddd, $J=11.4,11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.32(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{td}, J=9.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.53\left(\mathrm{~d}, J=13.1 \Gamma_{\mathrm{L}}, 1 \mathrm{H}\right), 3.55(\mathrm{t}, J=10.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.69(\mathrm{ddd}, J=12.0,10.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{td}, J=10.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=12.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.07(\mathrm{~m}$,
 73.0, 126.6, 127.2, 127.7 (2 C), 128.3 (2 C), 128.4 (2 C), 128.7 (2 C), 138.4, 140.8, 207.9. IR $v_{\max }$, (KBr): 3028, 2964, 2927, 2854, 2812, 1699, 1495, 1454, 1377, 1246, 1142, 1126, 758, 750, $700 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}: 322.1802$, found: 322.1808.
(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (25a)

To a solution of $22(5.0 \mathrm{~g}, 12.3 \mathrm{mmol})$ in $\mathrm{DCM}(60 \mathrm{ml}) \mathrm{Na}_{2} \mathrm{SO}_{4}(12 \mathrm{~g}, 84.5 \mathrm{mmol}, 7 \mathrm{eq})$ and $(+)-10-$ camphorsulfonic $\operatorname{acid}(1.4 \mathrm{~g}, 6.0 \mathrm{mmol}, 0.5 \mathrm{eq})$ were added and then 37% formaldehyde solution ($2 \mathrm{~g}, 24.5 \mathrm{mmol}, 2 \mathrm{eq}$) was added in one portion under vigorous stirring. The reaction mixture was stirred for 24 h , then solids were filtered off and washed with DCM (50 ml). The organic solutions were combined and evaporated in vacuo. The residue was treated with 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$ and extracted with $\mathrm{DCM}(2 \times 50 \mathrm{ml})$. The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentr ated in vacuo to a volume of $\sim 15 \mathrm{ml}$. Then hexane (75 ml) was added and the solvents were removed in vacuo to a volume of $\sim 50 \mathrm{ml}$. The mixture was maintained at room temperature until the initial crystallization was completed and then at $0^{\circ} \mathrm{C}$ overnight. The precipitate was filtered off, washed with hexane and dried to afford $\mathbf{2 5 a}\left(4.64 \mathrm{~g}, 90 \%\right.$). Rf 0.65 (hexane-EtOAc 2: 1), white solid, mp. $147-148^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta$ $(\mathrm{ppm}): 1.25(\mathrm{~s}, 5 \mathrm{H}), 1.49(\mathrm{~s}, 4 \mathrm{H}), 1.88-2.03(\mathrm{~m}, 0.5 \mathrm{H}), 2.05-2.28(\mathrm{~m}, 1.5 \mathrm{H}), 2.28-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.72(\mathrm{q}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.04(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.30(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{dd}, J=18.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~d}, J=15.1$
$\mathrm{Hz}, 0.5 \mathrm{H}), 4.36(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.47(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.75(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.10-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.42(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}):(28.0(3 \mathrm{C}), 28.3(3 \mathrm{C})),(33.0,33.8),(40.0,40.3),(46.8,47.2),(58.0,58.1),(58.2,58.8),(60.3,60.9),(65.5,66.3),(67.4$, $68.0),(80.6,80.8),(126.0,126.2), 127.0(2 \mathrm{C}), 127.2,128.3$ (2 C), 128.4 (2 C), 128.5 (2 C), (138.7, 138.8), (146.0, 146.6), (154.4, 155.1), (207.9, 208.2). IR $v_{\max },(\mathrm{KBr}): 2979,2958,2800,1714,1695,1454,1415,1392,1365,1246,1165,758,704 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calc. for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}$: 421.2486, found: 421.2482.
(3RS,3aSR,8aSR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (26a)

To a solution of $20(6.0 \mathrm{~g}, 14.7 \mathrm{mmol})$ in $\mathrm{DMSO}(75 \mathrm{ml}) 37 \%$ formaldehyde solution ($2.4 \mathrm{~g}, 29.6 \mathrm{mmol}, 2 \mathrm{eq}$) and (+)-10camphorsulfonic acid ($1.7 \mathrm{~g}, 7.35 \mathrm{mmol}, 0.5 \mathrm{eq}$) were added and the reaction was stirred for 24 h at $40^{\circ} \mathrm{C}$. Then the solution was poured into 2% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(200 \mathrm{ml})$ and extracted with hexane-DCM 3:1 mixture (2 x 200 ml). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-$\mathrm{DCM}_{-\mathrm{Et}_{2} \mathrm{O}} 3: 1: 0.6$) to afford 9: 1 mixture of 23a and $\mathbf{2 3 b}$ ($4.45 \mathrm{~g}, 72 \%$, d.e. 23a 80%). The mixture was dissolved in MeOH $(50 \mathrm{ml})$ and hydrogenated with $5 \% \mathrm{Pd} / \mathrm{C}\left(0.45 \mathrm{~g}, 10 \%\right.$ by weight) under H_{2} atmosphere (1 bar) until the reaction was completed ($\sim 24 \mathrm{~h}$). Pd / C was filtered off through celites, MeOH was evaporated in vacuo. The residue was subjected to chromatographic separation $\left(\mathrm{SiO}_{2}\right.$, hexane-$\mathrm{DCM}-\mathrm{Et}_{2} \mathrm{O}$ gradient from 3:1:4 to 0:0:1) to afford $\mathbf{2 6 a}(2.9 \mathrm{~g}, 84 \%$ from the mixture of $\mathbf{2 3 a}$ and $\mathbf{2 3 b}, 60 \%$ for 2 steps from $\mathbf{2 0}$). Also $\mathbf{2 6 b}(0.31 \mathrm{~g}, 9 \%$ from the mixture of $\mathbf{2 3 a}$ and $\mathbf{2 3 b}, 6.4 \%$ for 2 steps from $\mathbf{2 0}$) was obtained. 26a: Rf 0.3 (EtOAc), $\mathrm{mp} 105-107^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl} \mathrm{N}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})$: $1.46(\mathrm{~s}, 9 \mathrm{H}), 2.03$ (br. s., 1 H$), 2.37(\mathrm{t}, J=2.7 \mathrm{~Hz}, 0.45 \mathrm{H}), 2.42(\mathrm{t}, J=2.5 \mathrm{~Hz}, 0.55 \mathrm{H}), 2.63-3.37(\mathrm{~m}, 6 \mathrm{H}), 3.49(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-4.08(\mathrm{~m}$, $1.6 \mathrm{H}), 4.16(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.36(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.50(\mathrm{dd}, J=13.4,3.4 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.16-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.35(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 28.3(3 \mathrm{C}),(42.7,42.8),(43.2,43.3),(44.8,45.1),(53.4,54.1), 53.5,(62.2,62.8),(66.0,66.3), 80.4,126.5,127.5(2 \mathrm{C})$,
128.6 (2 C), (143.2, 143.5), 154.4, 207.4. IR $v_{\max }$ (KBr): 3423 (br.), 3244 (br.), 2979, 2856, 1697, 1457, 1417, 1365, 1250, 1221, 1169, 756, 700 cm ${ }^{-1}$.

HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}: 331.2016$, found: 331.2020.
(3SR,3aRS,8aSR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate hydrochloride (26b)

(A) From 23b: 23b (2.4 g , 5.7 mmol) was dissolved in $\mathrm{MeOH}(30 \mathrm{ml})$, the solution was acidified with 2 M HCl in MeOH to $\mathrm{pH} \sim 5,5 \% \mathrm{Pd} / \mathrm{C}\left(0.24 \mathrm{~g}, 10 \%\right.$ by weight) was added and the mixture was stirred under H_{2} atmosphere (1 bar) until the reaction was completed ($\sim 24 \mathrm{~h}$). Pd / C was filtered off through celites, MeOH was evaporated in vacuo. The residue was crystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ mixture to afford $\mathbf{2 6 b}(1.89 \mathrm{~g}, 90 \%) . \operatorname{Rf}$ (base) $0.4(\mathrm{EtOAc})$. White solid, mp $102-105^{\circ} \mathrm{C}$.
(B) From 35: To a solution of $35(3.5 \mathrm{~g}, 11 \mathrm{mmol})$ in DCM (60 ml) (+)-10-camphorsulfonic acid ($2.3 \mathrm{~g}, 9.9 \mathrm{mmol}, 0.9 \mathrm{eq}$) and $\mathrm{Na}_{2} \mathrm{SO}_{4}(11 \mathrm{~g}, 77 \mathrm{mmol}, 7 \mathrm{eq})$ were added and then under vigorous stirring 37% formaldehyde solution ($0.94 \mathrm{~g}, 11.6 \mathrm{mmol}, 1.05 \mathrm{eq}$.) was added in one portion. The reaction mixture was stirred for 24 h , solids were filtered off and washed with DCM (50 ml). The organic solutions were combined and washed with 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$. The organic layer was separated and the aq. layer was extracted with DCM (50 ml). The organic extracts were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was subjected to chromatographic separation $\left(\mathrm{SiO}_{2}\right.$, hexane- $\mathrm{DCM}^{2}-\mathrm{Et}_{2} \mathrm{O}$ gradient from 3: 1: 4 to $0: 0: 1$) to afford $\mathbf{2 6 b}(2.6 \mathrm{~g}, 72 \%)$. Also $\mathbf{2 6 a}(0.22 \mathrm{~g}, 6 \%)$ was obtained.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.50(\mathrm{~s}, 9 \mathrm{H}), 2.10(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 2.44-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.82(\mathrm{~m} ., 2 \mathrm{H}), 2.97(\mathrm{t}, \mathrm{J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.26$ $(\mathrm{m}, 1 \mathrm{H}), 3.31-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.75-4.03(\mathrm{~m}, 2.4 \mathrm{H}), 4.04-4.22(\mathrm{~m}, 1.6 \mathrm{H}), 7.15-7.37(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}(\mathrm{CDCl}, 100 \mathrm{MHz}), \delta(\mathrm{ppm}): 28.4(3 \mathrm{C})$, (44.4, 45.0), (46.5, 47.0), (50.5, 50.7), (55.1, 55.5), (57.3, 58.4), (63.7, 63.9), 80.4, 126.6, 127.6 (2 C), 128.6 (2 C), 141.9, (154.5, 154.6), (208.6, 208.8). IR $v_{\max }$, (KBr): 3444 (br.), $3182,2978,2931,2854,1691,1415,1365,1225,1169,945,754,702 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$: 331.2016, found: 331.2018.

$(+)-\mathbf{2 6 a}(4.85 \mathrm{~g}, 91 \%)$ was prepared from $\mathbf{5 2 a}(7 \mathrm{~g}, 16.1 \mathrm{mmol})$ according to the procedure for 26a. $\mathrm{Rf} 0.3(\mathrm{EtOAc}),[\alpha] \mathrm{D}^{23}=$ $+57.9\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$. White solid, $\mathrm{mp} 133-135^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.39(\mathrm{~s}, 9 \mathrm{H}), 2.51-2.64(\mathrm{~m}$, $2 \mathrm{H}), 3.22(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.28-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.70(\mathrm{t}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.95-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.27-$ $4.43(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 10.18$ (br.s., 2H$).{ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, $100 \mathrm{MHz}), \delta(\mathrm{ppm}): 27.9(3 \mathrm{C}), 42.3,(41.9,43.1), 43.4,(47.4,48.5),(49.5,49.7),(58.5,59.0),(60.0,60.3),(79.8,79.9), 127.2$, 128.1 (2C), 128.5 (2C), (138.8, 139.0), (153.2, 153.6), 205.3. HRMS (ESI): $m / z[M+H]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}: 331.2016$, found: 331.2015 .
(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a)

(-)-26a ($5.5 \mathrm{~g}, 90 \%$) was prepared from $55 \mathbf{a}(8.0 \mathrm{~g}, 18.4 \mathrm{mmol}$) according to the procedure for 26a. Rf 0.3 (EtOAc), a lightyellow solid with mp $140-144^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}=-57.1\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}: 331.2016$, found: 331.2014.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b)

To a solution of $46(7.5 \mathrm{~g}, 17.8 \mathrm{mmol})$ in $\mathrm{DCM}(90 \mathrm{ml}) \mathrm{Na}_{2} \mathrm{SO}_{4}(17.5 \mathrm{~g}, 123 \mathrm{mmol}, 7 \mathrm{eq})$ and (+)-10-camphorsulfonic acid (2.0 $\mathrm{g}, 8.62 \mathrm{mmol}, 0.5 \mathrm{eq})$ were added and then 37% formaldehyde solution ($2.9 \mathrm{~g}, 35.8 \mathrm{mmol}, 2 \mathrm{eq}$) was added in one portion under vigorous stirring. The reaction mixture was stirred for 24 h at $40^{\circ} \mathrm{C}$, cooled to room temperature, solids were filtered off and washed with $\mathrm{DCM}(50 \mathrm{ml})$. The organic solutions were combined, washed with 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane- $\left.\mathrm{DCM}-\mathrm{Et}_{2} \mathrm{O} 3: 1: 0.6\right)$ to afford $3: 1$ mixture of $\mathbf{5 2} \mathbf{a}$ and $\mathbf{5 2 b}(6.8 \mathrm{~g}, 88 \%)$. The mixture was dissolved in $\mathrm{MeOH}(80 \mathrm{ml})$ and hydrogenated with $5 \% \mathrm{Pd} / \mathrm{C}(0.68 \mathrm{~g}$, 10% by weight) under H_{2} atmosphere (1 bar) until the reaction was completed ($\sim 24 \mathrm{~h}$). Pd / C was filtered off through celites, MeOH was evaporated in vacuo. The residue was subjected to chromatographic separation $\left(\mathrm{SiO}_{2}\right.$, hexane- $\mathrm{DCM}^{2}-\mathrm{Et}_{2} \mathrm{O}$ gradient from $3: 1: 4$ to $\left.0: 0: 1\right)$ to afford (-)-26b (1.15 g, 22%). Also (+)-26a (3.25 g, 63\%) was isolated. (-)-26b: Rf $0.4(\mathrm{EtOAc}), \mathrm{mp} 90-92^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-59.7\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}: 331.2016$, found: 331.2015 .

(3S,3aR,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((+)-26b)

According to the procedure for (-)-26b $1: 1.3$ mixture of $\mathbf{5 5 a}$ and $\mathbf{5 5 b}(8.7 \mathrm{~g}, 85 \%)$ was obtained from $49(10.0 \mathrm{~g}, 23.7 \mathrm{mmol})$. The mixture was dissolved in $\mathrm{MeOH}(80 \mathrm{ml})$ and hydrogenated with $5 \% \mathrm{Pd} / \mathrm{C}(0.68 \mathrm{~g}, 10 \%$ by weight $)$ under H_{2} atmosphere (1 bar) until the reaction was completed ($\sim 24 \mathrm{~h}$). Pd / C was filtered off through celites, MeOH was evaporated in vacuo. The residue was subjected to chromatographic separation $\left(\mathrm{SiO}_{2}\right.$, hexane- $\mathrm{DCM}-\mathrm{Et}_{2} \mathrm{O}$ gradient from 3:1:4 to 0:0:1) to afford (+)26b ($3.2 \mathrm{~g}, 48 \%$) as a light-yellow solid with $\mathrm{mp} 85-87^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+93.7\left(\mathrm{c} 1, \mathrm{CHCl} \mathrm{CH}_{3}\right) . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$ for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}: 331.2016$, found: 331.2016 .

(3RS,3aSR,8aSR)-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one hydrochloride (27a)

39a ($0.50 \mathrm{~g}, 1.26 \mathrm{mmol}$, contained $\sim 12 \%$ 39b - d.e. 39a 76%) was dissolved in $\mathrm{MeOH}(6 \mathrm{ml}), 5 \% \mathrm{Pd} / \mathrm{C}(0.05 \mathrm{~g}$, 10% by weight) was added and the mixture was stirred under H_{2} atmosphere (1 bar) until the reaction was completed ($\sim 24 \mathrm{~h}$). Pd / C was filtered off through HCl celites, the solution was acidified with 2 M HCl in MeOH to $\mathrm{pH} \sim 5, \mathrm{MeOH}$ was evaporated in vacuo. The residue was crystallized from $\mathrm{EtOH}-\mathrm{Et}_{2} \mathrm{O}$ mixture to afford $\mathbf{2 7 a}\left(0.30 \mathrm{~g}, 82 \%\right.$, contained $\sim 15.4 \%$ of $\mathbf{2 7 b}-$ d.e. $\mathbf{2 7 a} 69 \%$). Rf (base) $0.4\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 10: 1\right)$. Chemical shifts of the signals of major isomer in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra coincide with the signals of (-)-27a. HRMS (ESI): m/z [M +H$]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$: 232.1332 , found: 232.1332.

(3R,3aS,8aS)-3-phenylhexahy dro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a)

$56 \mathbf{a}(1.4 \mathrm{~g}, 4.18 \mathrm{mmol})$ was dissolved in $\mathrm{MeOH}(20 \mathrm{ml}), 5 \% \mathrm{Pd} / \mathrm{C}(0.14 \mathrm{~g}, 10 \%$ by weight $)$ was added and the mixture was stirred under H_{2} atmosphere (1 bar) until the reaction was completed ($\sim 24 \mathrm{~h}$). Pd / C was filtered off through celites, the solution was evaporated in vacuo and the residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 15: 1\right)$ to afford (-)-27a ($0.87 \mathrm{~g}, 90 \%$) as a lightyellow solid with mp. $60-62^{\circ} \mathrm{C}$. $\mathrm{Rf} 0.4\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 10: 1\right),[\alpha]_{\mathrm{D}}{ }^{23}-22.5\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 2.13$ (br. s., 1 H), $2.45(\mathrm{dt}, J=19.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=19.0,11.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.4,9.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=11.8,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.94(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{ddd}, J=13.3,4.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.23(\mathrm{~m}, 1$ H), 7.25-7.36(m, 4 H$).{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 44.8,45.2,53.6,62.2,66.2,66.5,77.0,126.5,127.4(2 \mathrm{C}), 128.5(2 \mathrm{C}), 143.3,207.1$. IR $v_{\max },(\mathrm{KBr}): 3328$ (br.), 2947, $2875,1701,1250,1159,1134,914,843,758,702 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}: 232.1332$, found: 232.1333 .

$\mathbf{2 7 b}(3.55 \mathrm{~g}, 95 \%)$ was prepared from $\mathbf{2 4 b}(4.5 \mathrm{~g}, 14 \mathrm{mmol})$ according to the procedure for $\mathbf{2 7}$. Rf (base) $0.4\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 10: 1\right)$, white solid, mp $106-108^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.99$ (br. s., 1 H), 2.67 (ddd, $J=11.9,5.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.83 (ddd, $J=11.8,9.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=9.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.82(\mathrm{~m}$, $3 \mathrm{H}), 3.92(\mathrm{dt}, J=11.8,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=13.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta$ (ppm): 45.9, 47.6, 55.2, 58.5, 64.2, 68.8, 72.9, 126.7, 127.5 (2 C), 128.6 (2 C), 141.6, 208.1. Hydrochloride: m. p. $210-220^{\circ} \mathrm{C}$ (dec.). ${ }^{1} \mathrm{H}$ NMR (DMSO$\left.d_{6}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 2.61(\mathrm{dt}, J=8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{ddd}, J=12.5,9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.7,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{td}, J=12.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.82(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.93(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=13.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{ddd}, J=10.1,7.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-$ 7.29 (m, 1 H), $7.30-7.42\left(\mathrm{~m}, 4 \mathrm{H}\right.$), 10.00 (br. s., 2 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 43.2,44.3,49.7,56.7,59.3,67.2,67.7,127.2,127.9$ (2C), 128.6 (2C), 138.8, 206.0. IR $v_{\max }$, (KBr): 3423 (br., w.), 2858, 2740, 2611, 1705, 1140, 756, $698 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[M+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}$: 232.1332, found: 232.1332.

(3R,3aS,8aR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one hydrochloride ((+)-27b)

$\mathbf{(}^{+} \mathbf{)} \mathbf{- 2 7 b}(1.82 \mathrm{~g}, 91 \%)$ was prepared from $\mathbf{5 3 b}(2.5 \mathrm{~g}, 7.46 \mathrm{mmol})$ according to the procedure for $\mathbf{2 7 a}$. White solid, $\mathrm{mp} 217-223^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}+5.0(\mathrm{c}=1, \mathrm{MeOH}) . \mathrm{Rf}($ base $) 0.4\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 10: 1\right)$. $\mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}: 232.1332$, found: 232.1335 .

$(-)-\mathbf{2 7 b}(1.88 \mathrm{~g}, 94 \%)$ was prepared from $5 \mathbf{6 b}(2.5 \mathrm{~g}, 7.46 \mathrm{mmol})$ according to the procedure for $\mathbf{2 7 a}$. White solid, $\mathrm{mp} 225-230^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{23}-9.0(\mathrm{c}=1, \mathrm{MeOH}) . \mathrm{Rf}($ base $) 0.4\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 10: 1\right)$. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{2}: 232.1332$, found: 232.1334.

(3RS,3aSR,8aRS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate hydrochloride (28a)

$\mathbf{2 8 a}(3.1 \mathrm{~g}, 89 \%)$ was prepared from $\mathbf{2 5 a}(4.0 \mathrm{~g}, 9.52 \mathrm{mmol})$ according to the procedure for $\mathbf{2 7 a}$. Rf (base) 0.25 (EtOAc). White solid, mp $155-157^{\circ} \mathrm{C}(\text { dec. })^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.27(\mathrm{~s}, 4 \mathrm{H}), 1.47$ (s., 5 H), $2.13(\mathrm{t}, J=14.1$ $\mathrm{HCl} \mathrm{Hz}, 1 \mathrm{H}), 2.40-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.94-3.12(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.90(\mathrm{~m}, 4 \mathrm{H}), 3.94(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 0.6 \mathrm{H})$, $4.04(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.17(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 0.4 \mathrm{H}), 4.29(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.19-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.18$ (br. s., 2 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), $\delta(\mathrm{ppm}):(27.8,27.9)(3 \mathrm{C}),(30.2,30.6),(43.0,43.1), 45.3$, (49.0, 49.1), (57.6, 58.3), (58.5, 58.8), 61.1, (79.9, 80.2), 127.1, (127.7, 127.9) (2 C), (128.4, 128.5) (2 C), (139.9, 140.2) (153.5, 154.7), (205.2, 205.3). IR $v_{\text {max }},(\mathrm{KBr}): 3361$ (br.), 2974, 2922, 2792, 2760, 2721, 1718, 1703, 1460, 1419, 1367, 1246, 1167, $700 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}: 331.2016$, found: 331.2019.

$(+)-28 a(1.84 \mathrm{~g}, 87 \%)$ was prepared from $\mathbf{5 4 a}(2.5 \mathrm{~g}, 5.76 \mathrm{mmol})$ according to the procedure for $\mathbf{2 7 a}$. Rf (base) 0.25 (EtOAc). White solid, mp $220-227^{\circ} \mathrm{C}$ (dec.), $[\alpha]_{\mathrm{D}}^{23}+39.8(\mathrm{c}=1, \mathrm{MeOH})$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: 331.2016, found: 331.2017.
(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate ((-)-28a)

(-)-28a ($1.58 \mathrm{~g}, 85 \%$) was prepared from $\mathbf{5 7 a}(2.2 \mathrm{~g}, 5.07 \mathrm{mmol})$ according to the procedure for $\mathbf{2 7 a}$. Rf (base) 0.25 (EtOAc). White solid, mp $210-214^{\circ} \mathrm{C}$ (dec.), $[\alpha]_{\mathrm{D}}{ }^{23}-39.3$ ($\mathrm{c}=1$, MeOH). HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{19} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: HCl 331.2016, found: 331.2022.
(3RS,4SR)-Tert-butyl 3-(allylamino)-4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate hydrobromide (31)

31 ($10.9 \mathrm{~g}, 61 \%$ for 2 steps) was prepared from epoxide $\mathbf{1 4}(\sim 50 \mathrm{mmol})$ and allylamine ($8.5 \mathrm{~g}, 149 \mathrm{mmol}, 3$. eq) according to the procedure GP-4 with minor modifications. The reaction was carried out at $50^{\circ} \mathrm{C}$ for 216 h , and chromatographic purification of the product on silica gel was run using hexane-DCM-EtOAc 10:3:3 mixture. Analytically pure sample of 31 was prepared according to the procedure for 20. Rf (base) 0.25 (hexane-EtOAc 4: 1). White solid, $\mathrm{mp} 155-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d 6), $\delta(\mathrm{ppm}): 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.71(\mathrm{td}, J=12.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (br. s., 3 H$), 3.75(\mathrm{br} . \mathrm{d} ., J=4.7$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.97 (br. d., $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.29 (br. s., 1 H), 5.49 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.57 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.87-5.98(\mathrm{~m}, 1 \mathrm{H}), 6.75$ (s, 1 H), 7.40 $-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.54-7.61(\mathrm{~m}, 2 \mathrm{H}), 8.93+9.00$ (br. s. + br. s., 2 H). 13C NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$), $\delta(\mathrm{ppm}): 28.0(3 \mathrm{C}), 39.0,41.2$ (br.), 41.9 (br.), $48.7,60.1,68.6,79.9,86.0,88.3,121.3,123.7,128.6$ (2 C), 128.7, 129.3, 131.9 (2 C), 153.5. IR $v_{\max },(\mathrm{KBr}): 3280$ (br.), $2902,2775,2670,2233$ (w.), $1697,1691,1570,1425,1390,1246,1149,877,760,690 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3}: 357.2173$, found: 357.2173 .

(3RS,4SR)-3-(Allylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol hydrobromide (32)

$32(8.1 \mathrm{~g}, 63 \%$ for 2 steps) was prepared from epoxide $15(\sim 50 \mathrm{mmol})$ and allylamine ($8.5 \mathrm{~g}, 149 \mathrm{mmol}, 3$. eq) according to the procedure GP-4 with minor modifications. The reaction was carried out at $40^{\circ} \mathrm{C}$ for 72 h , and chromatographic purification of the product on silica gel was run using hexane-EtOAc 2: 1 mixture. Analytically pure sample of $\mathbf{3 2}$ was obtained by crystallization from EtOH - Et2O mixture. R_{f} (base) 0.35 (hexane - EtOAc 1: 1). White solid, mp $198-203{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right), \delta(\mathrm{ppm}): 1.88(\mathrm{td}, J=13.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.04-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{td}, J=11.7$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{dt}, J=11.6,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=11.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~d}, J=17.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.85-5.98(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.60(\mathrm{~m}, 2 \mathrm{H}), 8.89(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$), $\delta(\mathrm{ppm}): 39.8$ (overlaps with the signal of the solvent),48.6, 60.0, 63.9, 64.9, 67.3, 86.6, 88.0, 121.3, 123.7, 128.6 (2 C), 128.9, 129.2, 131.8 (2 C). IR $v_{\text {max }}$, (KBr): 3222(br.), 2991, 2868, 2767, 2679, 2632, 2522, 2424, 2237, 2222, 1595, 1489, 1435, 1419, 1128, 1107, 1063, 987, 883, 843, 769, 600 $\mathrm{cm}^{-1} . \mathrm{HRMS}$ (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{NO}_{2}$: 258.1489, found: 258.1493.

(3RS,4SR)-Tert-butyl 3-(allylamino)-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate hydrobromide (33)

$33(8.30 \mathrm{~g}, 84 \%)$ was prepared from $31(8.0 \mathrm{~g}, 22.5 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. The reaction was carried out for 1 h at $-5-+5^{\circ} \mathrm{C}$ and 33 was precipitated from $E t O H-\mathrm{Et}_{2} \mathrm{O} 1: 4$ mixture. R_{f} (base) 0.5 (hexane-Et $\mathrm{E}_{2} \mathrm{O} 7: 3$). White solid, $\mathrm{mp} 210-215^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.72(\mathrm{td}, J=$ $11.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 1.90 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.02 (br. s., 1 H), 3.27 (br. s., 2 H), 3.67 (br. s., 2 H), 3.75 (br. d., $J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 5.46(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.96(\mathrm{~m}, 2 \mathrm{H}), 6.71(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 8.77$ (br. s., 1 H$\left.) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(DMSO-d} \mathrm{C}_{6}, 100 \mathrm{MHz}\right)$, $\delta(\mathrm{ppm}): 28.0$ (3 C), 37.7, 40.4 (br., 2 C), 47.9, 60.1, 70.8, 79.7, 123.5, 126.9, 127.1 (2 C), 127.9, 128.5 (2 C), 128.7, 131.9, 136.4, 153.8. IR $v_{\max }$ (KBr): 3319 (br.), 2974, 2787, 1697, 1572, 1427, 1365, 1248, 1155, 1092, 983, 867, 746, $690 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}: 359.2329$, found: 359.2324 .

(3RS,4SR)-3-(Allylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrobromide (34)

$34(8.5 \mathrm{~g}, 86 \%)$ was prepared from $32(7.5 \mathrm{~g}, 29.2 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. The reaction was carried out for 75 min at $-5-0^{\circ} \mathrm{C}$. After the reaction was worked up the product was purified by chromatography (SiO 2 , hexane $-\mathrm{DCM}-$ EtOAc mixture, gradient from 10: $1: 2.2$ to $10: 1: 11$) and then 34 was precipitated from EtOH-Et $\mathrm{E}_{2} \mathrm{O} 1: 4$ mixture. R_{f} (base) 0.2 (hexane-EtOAc 1: 1). White solid, mp 199-204 ${ }^{\mathrm{V}} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$), δ (ppm): $1.76-1.86$ (m, 1 H), 1.93 $-2.03(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 3.60-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.72-3.85(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=12.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{~d}, J=17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.80-5.94(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}), $\delta(\mathrm{ppm}): 37.4,48.0,60.1,62.5,64.0,69.6,123.5,126.9$ (2 C), 127.9, 128.1, 128.5 (2 C), 128.9, $131.6,136.3$.

IR $v_{\text {max }}$, (KBr): 3313(br.), 2954, 2879, 2785, 2679, 1566, 1437, 1400, 1174, 1130, 1101, 1055, 985, 974, 748, 692, 633 cm^{-1}. HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{2}$: 260.1645 , found: 260.1644 .
(3RS,4SR)-Tert-butyl 3-amino-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate (35)

To a solution of $33(5.0 \mathrm{~g}, 14 \mathrm{mmol})$ in $\mathrm{DCM}(70 \mathrm{ml})$ DMBA ($6.5 \mathrm{~g}, 41.7 \mathrm{mmol}, 3 \mathrm{eq}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(0.33 \mathrm{~g}, 0.285$ $\mathrm{mmol}, 0.02 \mathrm{eq}$) were added and the mixture was stirred at $40^{\circ} \mathrm{C}$ until the reaction was completed ($\sim 1 \mathrm{~h}$). Then the reaction mixture was treated with 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$, the organic layer was separated and the aq. layer was extracted with DCM ($2 \times 100 \mathrm{ml}$). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvents were removed in vacuo. After purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{Et}_{2} \mathrm{O}-\mathrm{MeOH} 10: 1\right) 35(4.0 \mathrm{~g}, 90 \%)$ was obtained. Analytically pure sample of $\mathbf{3 5}$ was obtained by crystallization from MTBE. $\mathrm{R}_{\mathrm{f}} 0.25\left(\mathrm{Et}_{2} \mathrm{O}\right)$. White solid, $\mathrm{mp} 99-101^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.68$ (ddd, J $=13.3,9.2,4.1 \mathrm{~Hz}, 1 \mathrm{H}$), 1.95-2.07(m, 1 H), $2.79(\mathrm{dd}, J=7.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.08$ (br. s., 1 H), 3.37 (br. s., 1 H), 3.77 (dt, $J=13.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.84 (br. s., 1 H), $6.48(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$), δ (ppm): 28.5 (3C), (35.3 (br.), 36.0 (br.)), (40.2 (br.), 41.1 (br.)), 47.9, 56.3, 73.3, 80.0, 126.7 (2C), 128.0, 128.8 (2C), 129.9 (br.) 131.5, 136.6. 155.2. IR $v_{\max }$, (ZnSe): 3359, 3292, 2974, 2912, 1689, 1406, 1365, 1275, 1250, 1155, 1076, 1001, 968, 960, 754, $694 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}: 319.2016$, found: 319.2019.

(3RS,4SR)-3-Amino-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrochloride (36)

$36(4.65 \mathrm{~g}, 92 \%)$ was prepared from $34(6 \mathrm{~g}, 23.2 \mathrm{mmol})$ according to the procedure for 35 with minor modifications. After HCl work up of reaction mixture with 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$ product was extracted with $\mathrm{DCM}(3 \times 600 \mathrm{ml})$. Chromatographic purification of the product was run using silica gel pre-treated with $\mathrm{DCM} / \mathrm{NH} 3$ and $\mathrm{DCM} / \mathrm{NH}_{3}-\mathrm{MeOH} 100: 1$ mixture as eluent. Analytically pure sample of 36 was obtained by crystallization of hydrochloride salt from $\mathrm{EtOH}-\mathrm{Et} 2 \mathrm{O}$ mixture. $\mathrm{R}_{\mathrm{f}}(\mathrm{base}) 0.25\left(\mathrm{DCM} / \mathrm{NH}_{3}-\right.$ MeOH 20: 1). White solid, mp $164-167^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$), $\delta(\mathrm{ppm}): 1.64(\mathrm{dt}, J=14.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.07-2.20(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{br} . \mathrm{s} .$, $1 \mathrm{H}), 3.67-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{dd}, J=11.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.32$ (br. s., 3 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$), $\delta(\mathrm{ppm}): 34.3$ (br.), 54.2, $63.6,64.6,68.8,126.9$ (2 C), 127.7, 128.5 (2 C), 130.57, 130.63 (br.), 136.5. IR $v_{\max }$, (KBr): 3257 (br.), 3005, 2858, 1618, 1574, 1508, 1346, 1146, 1066, 976, 750, 696 cm ${ }^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{2}: 220.1332$, found: 220.1332 .

(3RS,4SR)-3-(Benzhydrylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (37)

$37(2.3 \mathrm{~g}, 60 \%)$ was prepared from epoxide $\mathbf{1 5}(\sim 10 \mathrm{mmol})$ and diphenylmethanamine $(5.5 \mathrm{~g}, 30 \mathrm{mmol}, 3 \mathrm{eq})$ according to the procedure GP-4 with minor modifications. The reaction was carried out at $85^{\circ} \mathrm{C}$ for 16 h , and after chromatographic purification of the product $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 10: 1:0.6) it was additionally purified via crystallization by dissolution in MTBE (10 ml), then addition of hexane (30 ml) and maintaining overnight at $-30^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}} 0.4$ (hexane-EtOAc $3: 1$). White solid, $\mathrm{mp} 130-135^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.70-1.92(\mathrm{td}+\mathrm{br} . \mathrm{s} ., J=12.6,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.33 (t, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.62-3.79$ (td + br. $\mathrm{s} ., J=12.1,2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.93 (dd, $J=11.6,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=$ $11.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 38.8,60.3,64.1$, $65.4,68.2,71.0,87.5,88.5,122.1,126.8(2 \mathrm{C}), 127.28,127.31(2 \mathrm{C}), 127.4,128.3$ (2 C), 128.61, 128.67 (2 C), 128.70 (2 C), 131.7 (2 C), $142.9,144.2$.

IR $v_{\text {max }},(\mathrm{KBr}): 3350$ (br.), 2924, 2858, $2218,1597,1491,1450,1333,1109,972,889,758,704 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$ for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO} \mathrm{N}_{2}$: 384.1958, found: 384.1964.
(3RS,4SR)-3-(Benzhydrylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (38)

$\mathbf{3 8}(1.9 \mathrm{~g}, 90 \%)$ was prepared from $37(2.1 \mathrm{~g}, 5.5 \mathrm{mmol})$ according to the procedure $\mathbf{G P}-\mathbf{5}$ with minor modifications. $\mathbf{3 7}$ was added to the reaction mixture as undissolved powder portionwise, the reaction was carried out at $-5-0^{\circ} \mathrm{C}$ for 1 h and after purification by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 10:1:2) $\mathbf{3 8}$ was additionally purified via crystallization by dissolution in MTBE (5 ml), then addition of hexane (20 ml) and maintaining overnight at $-30^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{f}} 0.25$ (hexane-EtOAc 3: 1). White solid, mp $112-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.72$ (br. s., 1 H$), 1.82($ br. s., 1 H$), 2.05(\mathrm{ddd}, J=12.9,6.1,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.23$ (br. s., 1 H), 2.61 (br. s., 1 H), 3.56 (br. s., 1 H), $3.66-3.77$ (m, 1 H), 3.87 (ddd, $J=11.9,6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99 (dd, $J=11.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.99 (br. s., $1 \mathrm{H}), 6.72(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.51(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 36.5(\mathrm{br}),. 59.9(\mathrm{br})$), 64.3 , 64.9, 66.4, 72.2, 126.5 (2 C), 127.1 (2 C), 127.18, 127.22, 127.7 (3 C), 128.5 (2 C), 128.59 (2 C), 128.62 (2 C), 129.7, 132.2, 136.8, 143.2, 144.6. IR $v_{\max },(\mathrm{KBr}): 3371$ (br.), 2937, 1597, 1581, 1464, 1450, 1377, 1170, 1107, 1063, 971, 746, 704, $694 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd} \mathrm{for} \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO} \mathrm{N}_{2}$: 386.2115, found: 386.2120 .

(3RS,3aSR,8aSR)-1-benzhydryl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (39a)

To a solution of $38(1.0 \mathrm{~g}, 2.60 \mathrm{mmol})$ in DMSO $(25 \mathrm{ml}) 37 \%$ formaldehyde solution $(0.42 \mathrm{~g}, 5.18 \mathrm{mmol}, 2 \mathrm{eq})$ and (+)-10camphorsulfonic acid ($0.55 \mathrm{~g}, 2.37 \mathrm{mmol}, 0.9 \mathrm{eq}$) were added and the reaction was stirred for 24 h at $45^{\circ} \mathrm{C}$. Then the solution was poured into 2% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(100 \mathrm{ml})$ and extracted with hexane-DCM 3:1 mixture ($2 \times 50 \mathrm{ml}$). The organic layers were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 20: 1: 1) to afford $\sim 7: 1$ mixture of $\mathbf{3 9 a}$ and $\mathbf{3 9 b}\left(0.74 \mathrm{~g}, 72 \%\right.$, d.e. $\mathbf{3 9 a} 75 \%$). $\mathrm{R}_{\mathrm{f}} 0.35$ (hexane-EtOAc $3: 1$). White solid, mp 125 $-127^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})($ major isomer) : $2.43(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{ddd}, J=18.3,11.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.85(\mathrm{td}, J=10.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=10.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{t}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}$, $J=11.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.84(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{dt}, J=13.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 1 \mathrm{H}), 7.17-7.42(\mathrm{~m}, 13 \mathrm{H}), 7.46(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm})$ (major isomer): 41.1, 44.9, 59.4, 66.1, 66.3, 66.7, 72.6, 77.1, 126.4, 127.1, 127.4, 127.5 (2 C), 128.3 (4 C), 128.37 (2 C), 128.40 (2 C), 128.5 (2 C), 141.6, 142.5, 143.7, 207.5. IR $v_{\max }$, (KBr): 2922, 2854, 1714, 1600, 1456, 1377, 1068, 931, 846, 741, 702 cm ${ }^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{2}: 398.2115$, found: 398.2121.
(3S,4R)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-(phenylethynyl)piperidine-1-carboxylate (40)

$40(15.3 \mathrm{~g}, 38 \%)$ was prepared from epoxide $14(\sim 96 \mathrm{mmol})$ and (R)-1-phenylethylamine ($29 \mathrm{~g}, 240 \mathrm{mmol}, 2.5 \mathrm{eq}$) according to the procedure GP-4 with minor modifications. The reaction was carried out at $55^{\circ} \mathrm{C}$ for 120 h , and chromatographic separation of 40 and 43 on silica gel was run using hexane-DCM-EtOAc 10: 1: 1 mixture. 40: $\mathrm{R}_{\mathrm{f}} 0.6$ (hexane-EtOAc 5: 1), $[\alpha]_{\mathrm{D}}{ }^{23}=+72.0\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$. White solid, $\mathrm{mp} 83-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$, $\delta(\mathrm{ppm})$: $1.41(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.59(\mathrm{td}, J=12.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 2.70$ (br. s., 1 H), 3.07 (br. s., 1 H), 3.90 (s, 1 H), $3.94-4.22$ (m, 2 H), $4.27-4.60$ (br. m., 1 H), $7.24-7.41$ (m, 8 H), $7.45-$
$7.51(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 25.4,28.3(3 \mathrm{C}), 37.1,(40.8$ (br.), 41.6 (br.)), (44.8 (br.), 45.3 (br.)), 54.4, 59.8, 71.0, 79.8, 87.1, $88.4,122.2,126.8(2 \mathrm{C}), 127.4$ (br.), 128.3 (2 C), 128.6 (2 C), 131.7 (2 C), 144.3 (br.), 144.6 (br.), 154.3. IR $v_{\text {max }}$ (KBr): 3480, 3400, 3250, 2940, 2870 , 1707, $1475 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}: 421.2486$, found: 421.2482 .

(3R,4S)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-(phenylethynyl)piperidine-1-carboxylate (43)

$43(14.5 \mathrm{~g}, 36 \%)$ was prepared from epoxide $14(\sim 96 \mathrm{mmol})$ and (R)-1-phenylethylamine ($29 \mathrm{~g}, 240 \mathrm{mmol}, 2.5 \mathrm{eq}$) according to the procedure GP-4 with minor modifications. The reaction was carried out at $55^{\circ} \mathrm{C}$ for 120 h , and chromatographic separation of $\mathbf{4 0}$ and $\mathbf{4 3}$ on silica gel was run using hexane-DCM-EtOAc 10: 1: 1 mixture. 43: $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 5:1). White solid, mp $164-165^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+52.8\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right), \delta$ (ppm):1.40 (d, $J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.50-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.79(\mathrm{td}, J=12.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{dt}, J=12.9,2.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63(\mathrm{q}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{dd}, J=10.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 4.05(\mathrm{q}$, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 7.23-7.46(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 23.9,28.4(3 \mathrm{C}), 37.7$, 41.6 (br.), 46.3 (br.), 55.6 (br.), 61.5 (br.) 71.6, 79.8, 87.3, 88.7, 122.4, 126.3 (2 C), 127.2, 128.3 (2 C), 128.5, 128.6 (2 C), 131.8, 146.4, 154.6. IR $v_{\max }$ (KBr): 3400 (br.), 2940, 2885, 1668, 1475, 1160, 780, $710 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}: 421.2486$, found: 421.2482.

(3S,4R)-3-(((R)-1-Phenylethyl)amino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (41)

The emulsion of the epoxide $\mathbf{1 5}(\sim 70 \mathrm{mmol})$ and (R)-1-phenylethylamine ($21 \mathrm{~g}, 174 \mathrm{mmol}, 2.5 \mathrm{eq}$) in water (50 mL) was vigorously stirred at $55^{\circ} \mathrm{C}$ for 96 h . Then water (200 ml) was added and the reaction was extracted with DCM ($2 \times 200 \mathrm{ml}$). The organic extracts were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chromatographic purification of the residue $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 10: 3:2) yielded a mixture of 41 and $\mathbf{4 4}$ which was dissolved in MTBE (60 ml), hexane (120 ml) was added and the solution was concentrated in vacuo to a vol. $\sim 60 \mathrm{ml}$. Then hexane $(150 \mathrm{ml})$ was added and the solution was maintained overnight at $-20^{\circ} \mathrm{C}$. The precipitate was separated, washed with hexane and crystallized again as described to afford $41(6.3 \mathrm{~g}, 28 \%)$. Rf 0.5 (hexane-EtOAc 4: 1). White solid, mp $130-131^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-25.6\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.39(\mathrm{~d}+\mathrm{br}$. $\mathrm{s} ., J=6.5 \mathrm{~Hz}, 4$ H), $1.79(\mathrm{dt}, J=12.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.81(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{dd}$, $J=11.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=11.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.45(\mathrm{~m}, 8 \mathrm{H}), 7.46-7.59(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$, $\delta(\mathrm{ppm}): 25.4,38.5,54.6,59.8,65.5,68.1,70.4,87.2,88.7,122.3,126.7$ (2 C), 127.4, 128.4 (2 C), 128.6, 128.7 (2 C), 131.7 (2 C), 144.7. IR $v_{\text {max }}$, (KBr): 3400, 2966, 2929, 2864, 1597 (w.), 1489, 1394, 1336, 1281, 1124, 1101, 1070, 1055, 1022, 980, 758, 732, 698, 690, 665, $552 \mathrm{~cm}^{-1}$. HRMS (ESI): m / z $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}: 322.1802$, found: 322.1801.

(3R,4S)-3-(((R)-1-Phenylethyl)amino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (44)

The emulsion of the epoxide $\mathbf{1 5}(\sim 70 \mathrm{mmol})$ and (R)-1-phenylethylamine ($21 \mathrm{~g}, 174 \mathrm{mmol}, 2.5 \mathrm{eq}$) in water (50 mL) was vigorously stirred at $55^{\circ} \mathrm{C}$ for 96 h . Then water (200 ml) was added and the reaction was extracted with DCM ($2 \times 200 \mathrm{ml}$). The organic extracts were combined, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Chromatographic purification of the residue (SiO_{2}, hexane-DCM-EtOAc 10: 3:2) yielded a mixture of $\mathbf{4 1}$ and $\mathbf{4 4}$ which was dissolved in MTBE (60 ml), hexane (120 ml) was added and the solution was concentrated in vacuo to a vol. $\sim 60 \mathrm{ml}$. Then hexane (150 ml) was added and the solution was maintained overnight at $-20^{\circ} \mathrm{C}$. The precipitate was separated, washed with hexane and crystallized again as described to afford $41(6.3 \mathrm{~g}, 28 \%)$. Mother liquors from crystallizations were combined and the solvents were evaporated in vacuo to yield $\mathbf{4 4}(7.2 \mathrm{~g}, 32 \%)$, which contained $\sim 12.5 \%$ of the residual 41 (d.e. 3275%). $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}=+14.0\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})$ (major product): $1.41(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 1.97(\mathrm{td}, J=12.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.93$
 $61.5,65.5,68.8,71.0,87.4,88.5,122.2,126.3(2 \mathrm{C}), 127.4,128.3$ (2 C), 128.6, 128.7 (2 C), 131.7 (2 C), 146.1 (br.). IR $v_{\text {max, }}$ (KBr): 3388 (br.), 3060 , 3027, 2962, 2925, 2860, 2245 (w.), 2225 (w.), 1647, 1599, 1491, 1450, 1373, 1333, 1122, 1099, 1066, 75, 702, $692 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[M+H]^{+}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}$: 322.1802 , found: 322.1798 .

(3S,4S)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-(phenylethynyl)piperidine-1-carboxylate (42)

$42(4.4 \mathrm{~g}, 35 \%)$ wase prepared from epoxide $16(\sim 30 \mathrm{mmol})$ and (R)-1-phenylethylamine ($7.5 \mathrm{~g}, 62 \mathrm{mmol}, \sim 2 \mathrm{eq}$) according to the procedure GP-4 with minor modifications. The reaction was carried out at $35^{\circ} \mathrm{C}$ for 96 h and chromatographic separation of $\mathbf{4 2}$ and $\mathbf{4 5}$ on silica gel was run using hexane-DCM-EtOAc mixture with gradient from 10: 1: 1.3 to $10: 1: 2.6 .42: \mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}+48.0\left(\mathrm{c}=1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 55^{\mathrm{O}} \mathrm{C}\right)$, $\delta(\mathrm{ppm}): 1.41(\mathrm{~s}, 12 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 1 \mathrm{H}), 2.07(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.70(\mathrm{~m}, 2 \mathrm{H})$, 1.60-3.00 (br. s., 1 H), 4.05 (q, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (br. s., 1 H), $4.44(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.51(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 55^{\circ} \mathrm{C}$), $\delta(\mathrm{ppm}): 25.5,28.4$ (3 C), 28.5, 43.0 (br.), 53.0 (br.), 54.2, 61.5, 70.3, 79.7, 86.4, 88.7, (122.8, 126.3), 126.8 (2 C), 127.3, 128.2 (2 C), 128.4, 128.7 (2 C), 131.9 (2 C), 144.9, 154.6. IR $v_{\max },(\mathrm{KBr}): 3354$ (br.), 2976, 2927, 2864, 2247 (w.), 1691, 1429, 1365, 1279, 1238, 1155, 908, 897, 758, 733, 702, $694 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}: 421.2486$, found: 421.2484 .

(3R,4R)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-(phenylethynyl)piperidine-1-carboxylate (45)

$45(3.4 \mathrm{~g}, 27 \%)$ was prepared from epoxide $16(\sim 30 \mathrm{mmol})$ and (R)-1-phenylethylamine ($7.5 \mathrm{~g}, 62 \mathrm{mmol}, \sim 2$ eq) according to the procedure for 19 with minor modifications. The reaction was carried out at $35^{\circ} \mathrm{C}$ for 96 h and chromatographic separation of $\mathbf{4 2}$ and 45 on silica gel was run using hexane-DCM-EtOAc mixture with gradient from 10: 1: 1.3 to 10: 1: 2.6. 45: $\mathrm{R}_{\mathrm{f}} 0.45$ (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}-52.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.25-1.61$ $(\mathrm{m}, 13 \mathrm{H}), 1.65-1.87(\mathrm{~m}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=11.5,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.84(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-3.50(\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 3.98$ $(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.67(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.44(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$, $\delta(\mathrm{ppm}): 23.6,28.5(3 \mathrm{C}), 29.3,42.9,53.3,55.3,62.9,70.3,79.8,86.3,88.3,122.4,126.3$ (2 C), 127.3, 128.1 (2 C), $128.3,128.6$ (2 C), $131.8,146.3$
(br.), 154.5. IR $v_{\max }$, (KBr): 3386 (br.), 2974, 2927, 2864, 2247 (w.), 1681, 1491, 1431, 1365, 1242, 1155, 910, 758, 733, 702, 694 cm ${ }^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}$: 421.2486, found: 421.2479.
(3S,4R)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-((E)-styryl)piperidine-1-carboxylate (46)

$46(10.3 \mathrm{~g}, 85 \%)$ was prepared from $40(12 \mathrm{~g}, 28.6 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. 40 was added to the reaction mixture as undissolved powder portionwise, the reaction was carried out at $-5^{\circ} \mathrm{C}$ for 1 h and 46 was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-Et O 1: 1: 0.5). $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 7: 3), $[\alpha]_{\mathrm{D}}{ }^{23}=-59.9$ (c $1, \mathrm{CHCl}_{3}$). White solid, mp $155-157^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 1.27$ (br. s., 1 H), 1.35 (d, $J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.55-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.95(\mathrm{ddd}, J=13.6,7.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (br. s., 1 H), 2.37 (dd, $J=6.6$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=13.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{q}, ~ J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ $(\mathrm{d}, J=16.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.45(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 5{ }^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 25.3,28.5(3 \mathrm{C}), 35.2,40.2$ (br.), 43.2, 55.3, 59.4, 72.4, 79.6, 126.6 (2 C), 127.0 (2 C), 127.1, 127.6, 128.4 (2 C), 128.6 (2 C), 130.0, 132.3, 137.1, 145.3, 155.1. IR $v_{\max }$, (KBr): 3483 (br.), 2978, 2922, 1662, 1475, $1430,1365,1265,1250,1161,1115,1055,980,752,694 \mathrm{~cm}^{-1} . \operatorname{HRMS}(E S I): m / z[M+H]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 423.2642$, found: 423.2643.

(3S,4R)-3-(((R)-1-Phenylethyl)amino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (47)

$47(5.55 \mathrm{~g}, 92 \%)$ was prepared from $41(6 \mathrm{~g}, 18.7 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. 41 was added to the reaction mixture as undissolved powder portionwise, the reaction was carried out at $-5-0^{\circ} \mathrm{C}$ for 1.5 h and 47 was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc $2: 1: 0.5$). $\mathrm{R}_{\mathrm{f}} 0.3$ (hexane-EtOAc 7: 3). White solid, mp $91-92^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}$ $=-121.5\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.34(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 1.66(\mathrm{ddd}, J=13.3,7.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{ddd}, J=13.5,6.7,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.58(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=11.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{ddd}, J=11.4,7.6$, $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.96(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{dd}, J=11.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.52(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 25.3,36.4$ (br.), 55.4, 59.4, 64.3, 66.2, 71.6, 126.5 (2 C), 126.9 (2 C), 127.1, 127.5, 128.4 (2 C), 128.5 (2 C), $129.6,132.0$ (br.), 136.9, 145.1. IR $v_{\max }$, (KBr): 3543, 3313, 2962, 2864, 1597 (w.), 1490, 1448, 1232, 1134, 1111, 1092, 1028, 1001, 978, 841, 761, 746, 700 cm ${ }^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}: 324.1958$, found: 324.1961.

(3S,4S)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (48)

$48(3.58 \mathrm{~g}, 89 \%)$ was prepared from $42(4.0 \mathrm{~g}, 9.52 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. The reaction was carried out at $-2-+2^{\circ} \mathrm{C}$ for 2 h and 48 was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCMEtOAc 3: 1: 0.8). R_{f} (base) 0.5 (hexane-EtOAc 3: 1). White solid, mp $230-231^{\circ} \mathrm{C}(\mathrm{dec}),.[\alpha]_{\mathrm{D}}{ }^{23}-72.5(\mathrm{c}=0.5, \mathrm{MeOH})$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.14-1.52(\mathrm{~m}, 9 \mathrm{H}), 1.63(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.02$ - 2.22 (m, 1 H), 2.55-2.90(m, 3 H), 3.80-4.20 (br. m., 2 H), 4.65 (br. s., 1 H), 6.03 ($\mathrm{s}, 1 \mathrm{H}$), $6.20-6.47$ (m, 1 H), 6.96 $(\mathrm{d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.52(\mathrm{~m}, 7 \mathrm{H}), 7.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}$ (DMSO- $d_{6}, 100 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 19.6,24.1$ (br.), 27.8 (3 C), 41.1 (br.), 54.0 (br.), 55.1, 61.5, 70.8, 79.2, 126.3, 126.6 (2 C), 127.8 (2 C), $127.9,128.5$ (2
C), 129.0 (3 C), 131.5 (br.), 136.3, 136.7, 153.1 (br.). IR $v_{\max }$, (KBr): 3369, 2976, 2933, 2819, 1689, 1568, 1454, 1427, 1365, 1279, 1248, 1159, 768, $756,704 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 423.2642$, found: 423.2647.
(3R,4S)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-((E)-styryl)piperidine-1-carboxylate (49)

$49(12.2 \mathrm{~g}, 93 \%)$ was prepared from $\mathbf{4 3}(13 \mathrm{~g}, 31 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. $\mathbf{4 3}$ was added to the reaction mixture as undissolved powder portionwise, the reaction was carried out at $-5^{\circ} \mathrm{C}$ for 1 h and product 49 was purified by column chromatography (SiO_{2}, hexane-DCM-Et $\mathrm{O}_{2} \mathrm{O}: 1: 0.5$). $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 7: 3), $[\alpha]_{\mathrm{D}}{ }^{23}=+47.1\left(\mathrm{c} 0.6, \mathrm{CHCl}_{3}\right)$. White solid, mp $100-105^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 40^{\circ} \mathrm{C}\right), \delta(\mathrm{ppm}): 1.25-1.39$ (br. s. $+\mathrm{d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}$), 1.47 (s, 9 H), $1.70(\mathrm{ddd}, J=13.4,9.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{ddd}, J=13.3,6.2,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40-2.89(\mathrm{~m}+\mathrm{br} . \mathrm{s} ., 2 \mathrm{H}), 2.99(\mathrm{dd}, J=13.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{ddd}, J=13.2,9.5,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dt}, J=13.8 \mathrm{~Hz}, 4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{q}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60-4.05$ (br. s., 1 H), $6.60(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.37(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 40^{\circ} \mathrm{C}\right.$), $\delta(\mathrm{ppm}): 23.7$ (br.), 28.4 (3 C), $36.3,40.5$ (br.), 45.2 (br.), 56.4 (br.), 60.7, 72.9, 79.8, 126.4 (2 C), 126.5 (2 C), 127.1, 127.7, 128.5 (2 C), 128.6 (2 C), 130.5, 131.0 (br.), 137.0, 146.4, 155.1. IR $v_{\max }$, (KBr): 3388 (br.), 2970, 2927, 2870, 1666, 1429, 1275, 1149, 1068, 764, 700 cm^{-1}. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 423.2642$, found: 423.2639.

(3R,4S)-3-(((R)-1-Phenylethyl)amino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (50)

$50(6.35 \mathrm{~g}, 90 \%$, d.e. 75%) was prepared from $43(7 \mathrm{~g}, 21.8 \mathrm{mmol}$, d.e. $75 \%)$ according to the procedure GP-5 with minor modifications. The reaction was carried out at $-5-0^{\circ} \mathrm{C}$ for 1.5 h and 50 was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 2: 1: 0.5). $\mathrm{R}_{\mathrm{f}} 0.3$ (hexane-EtOAc 7: 3), $[\alpha]_{\mathrm{D}}{ }^{23}=+1.0\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})(\mathrm{major}$ product): $1.36(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-3.00$ (br. s., 2 H), 1.81 (ddd, $J=12.9,9.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (ddd, $J=13.5,5.3,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.72(\mathrm{dd}, J=7.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.22(\mathrm{dd}, J=11.4,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{ddd}, J=11.8,9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83-3.95(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.52(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{CDCl}, 100 \mathrm{MHz}), \delta(\mathrm{ppm})(\mathrm{major}$ product): $24.0,37.5,56.9,61.0,64.4,68.1,72.4,126.4(2 \mathrm{C}), 126.5(2 \mathrm{C}), 127.1,127.6,128.5$ (2 C), 128.6 (2 C), 130.2, 131.0 (br.), 136.9, 146.3. IR $v_{\max },(\mathrm{KBr}): 3411$ (br.), 3026, 2962, 2925, 2866, 2247 (w.), 1492, 1448, 1120, 1097, 1066, 972, 910, 748, 733, $700 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+}$ calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NO}_{2}: 324.1958$, found: 324.1957 .

(3R,4R)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (51)

$51(2.8 \mathrm{~g}, 93 \%)$ was prepared from $\mathbf{4 5}(3.0 \mathrm{~g}, 7.14 \mathrm{mmol})$ according to the procedure GP-5 with minor modifications. The reaction was carried out at $-10--5^{\circ} \mathrm{C}$ for 2 h and 51 was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCMEtOAc 3: 1: 0.8). R_{f} (base) 0.5 (hexane-EtOAc 3: 1). White solid, mp $245-247^{\circ} \mathrm{C}(\mathrm{dec}),.[\alpha]_{\mathrm{D}}{ }^{23}+35.1(\mathrm{c}=1$, MeOH$)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 1.10-1.55$ (br. m., 9 H), $1.66(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.69-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.02$ (d, $J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65-3.12$ (br. m., 2 H), 3.30-3.46(m, 1 H$), 4.04$ (br. s., 2 H), $4.55-4.70(\mathrm{~m}, 1 \mathrm{H}), 6.08$ (s, 1 H), $6.35(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.50(\mathrm{~m}, 7 \mathrm{H}), 7.70(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.38(\mathrm{br} . \mathrm{s} ., 1 \mathrm{H}), 8.84(\mathrm{br}$. s., 1 H). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$), $\delta(\mathrm{ppm}): 19.2,25.2$ (br.), 27.9 (3 C), 41.2 (br.), 53.9 (br.), 57.1, 63.2, 71.1, 79.1, 126.3, 126.5 (2 C), 127.8,
128.3 (2 C), 128.5 (2 C), 128.7 (2 C), 128.8, 131.4 (br.), 136.5, 137.7, 153.1 (br.). IR $v_{\max },(\mathrm{KBr}): 3259,2978,2935,2677,1668,1585,1444,1365,1250$, 1153, 968, 758, $694 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 423.2642$, found: 423.2642 .

(3S,3aR,8aR)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (52a)

52a $(7.5 \mathrm{~g}, 73 \%)$ was prepared from $46(10 \mathrm{~g}, 23.7 \mathrm{mmol})$ according to the procedure for $9: 1$ mixture of 23a and 23b. R_{f} 0.4 (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}=+68.2\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$. White solid, mp $115-117^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta$ $(\mathrm{ppm}): 1.48(\mathrm{~s}, 4.5 \mathrm{H}), 1.50-1.60(\mathrm{~s}+\mathrm{m}, 7.5 \mathrm{H}), 2.31(\mathrm{~s}, 0.45 \mathrm{H}), 2.36(\mathrm{~s}, 0.55 \mathrm{H}), 2.43-2.59(\mathrm{~m}, 1 \mathrm{H}), 2.60-3.04(\mathrm{~m}$, $3 \mathrm{H}), 3.05-3.40(\mathrm{~m}, 3 \mathrm{H}), 3.57-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=14.0,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.86(\mathrm{dd}, J=$ $13.4,3.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.10-7.44(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}):(19.4,19.7),(28.3,28.5(3 \mathrm{C}))$, (40.9, 41.0), (42.3, 42.9), (43.1, 43.2), (52.8 (br.), 53.6 (br.)), (55.0 (br.), 55.6 (br.)), (58.5 (br.), 58.7), (63.9, 64.2), 66.2 (br.), ($80.2,80.5$), 126.4, 127.3 (br.), 127.5 (2 C), 127.9, 128.1 (2 C), 128.4, 128.5 (2 C), (139.5 (br.), 140.4 (br.)), (144.1 (br.), 144.6 (br.)), (154.1, 154.3), (207.7, 207.9). IR $v_{\max }$, (ZnSe): 2983, 2964, 2931, 2885, 1693, 1454, 1414, 1369, 1246, 1165, 760, $702 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd} \mathrm{for}$ $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}: 435.2642$, found: 435.2638 .

(3R,3aS,8aR)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (53b)

To a solution of $47(5.0 \mathrm{~g}, 15.5 \mathrm{mmol})$ in THF (80 ml) 37% formaldehyde solution ($2.5 \mathrm{~g}, 31 \mathrm{mmol}, 2 \mathrm{eq}$) and (+)-10camphorsulfonic acid ($1.8 \mathrm{~g}, 7.76 \mathrm{mmol}, 0.5 \mathrm{eq}$) were added and the reaction mixture was stirred for 24 h at $45^{\circ} \mathrm{C}$. Then the solution was cooled to room temperature, evaporated in vacuo and the residue was treated with $5 \% \mathrm{aq}_{2} \mathrm{CO}_{3}$ (50 ml) and extracted with DCM ($2 \times 50 \mathrm{ml}$). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc $\left.3: 1: 0.75\right)$ yielded $1: 3$ mixture of 53 a and $\mathbf{5 3 b}(4.95 \mathrm{~g}, 95 \%)$. The mixture was dissolved in MTBE (50 ml), hexane (100 ml) was added, then the solution was concentrated in vacuo to a vol. $\sim 50 \mathrm{ml}$ and maintained for 3 h at room temperature and overnight at $-20^{\circ} \mathrm{C}$. The precipitate was filtered off, washed with precooled to $0^{\circ} \mathrm{C}$ hexane and dried to afford $\mathbf{5 3 b}(2.9 \mathrm{~g}, 56 \%)$. $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 7: 3). White solid, $\mathrm{mp} 134-135^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-16.6\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.51(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3$ H), 2.45-2.61(m, 2 H), $2.84(\mathrm{td}, J=11.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=12.2,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{t}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{t}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.93-4.08(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.43(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 21.8,43.0$, $46.9,57.8,58.8,61.5,62.3,69.5,74.1,126.6,127.2,127.7$ (2 C), 127.8 (2 C), 128.29 (2 C), 128.34 (2 C), 140.6, 141.8, 208.3. IR $v_{\max }$ (KBr): 3427 (br.), 2972, 2960, 2871, 2846, 2800, 1702, 1495, 1454, 1243, 1134, 843, 768, $702 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}: 336.1958$, found: 336.1961 .

(3S,3aR,8aS)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (54a)

$\mathbf{5 4 a}(2.7 \mathrm{~g}, 88 \%)$ was prepared from $48(3.0 \mathrm{~g}, 7.11 \mathrm{mmol})$ according to the procedure for $\mathbf{2 5 a}$ with minor modifications. The reaction was carried out at $40^{\circ} \mathrm{C}$ and purification of the product 54a was carried out using column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 3: 1: 0.7). $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}-9.3(\mathrm{c}=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}), \delta(\mathrm{ppm}): 1.29(\mathrm{~s}, 5 \mathrm{H}), 1.52(\mathrm{~s}, 4 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.58-$ $2.74(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{dt}, J=15.6,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{dd}, J=18.1,15.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.74(\mathrm{~m}, 1$ H), 4.12-4.27(m, 1.5H), 4.29-4.49 (m, 1 H), $4.69(\mathrm{~d}, ~ J=18.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.11-7.49(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (CDCl $\left.3,100 \mathrm{MHz}\right), \delta(\mathrm{ppm}):(19.60,19.63)$, $(28.0,28.2)(3 \mathrm{C}),(33.1,34.1),(39.9,40.3),(46.5,46.9),(53.4,53.9),(56.6,56.9),(57.8,58.6),(62.9,63.5),(64.4,65.1),(80.5,80.6),(126.05,126.13)$, (127.05, 127.14) (2 C), (127.18, 127.21) (2 C), 127.97 (2 C), 128.03 (2 C), 128.4 (2 C), (138.9, 139.0), (145.1, 145.9), (154.3, 155.0), (208.0, 208.3). IR $v_{\max },(\mathrm{KBr}): 2950,1700,1460,1425,1375,1260,1170,925,710 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 435.2642$, found: 435.2639 .

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (55a)

$\mathbf{5 5 a}(8.6 \mathrm{~g}, 70 \%)$ was prepared from $49(12 \mathrm{~g}, 28.4 \mathrm{mmol})$ according to the procedure for $9: 1$ mixture of 23a and $\mathbf{2 3 b} . \mathrm{R}_{\mathrm{f}}$ 0.5 (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}=-43.2\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right)$. White solid, mp $111-114^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm})$: $1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 2.35(\mathrm{~s}, 0.45 \mathrm{H}), 2.39(\mathrm{~s}, 0.55 \mathrm{H}), 2.61-2.93(\mathrm{~m}, 4 \mathrm{H}), 2.99-3.19(\mathrm{~m} .1 .5 \mathrm{H}), 3.21$ $-3.42(\mathrm{~m}, 1.5 \mathrm{H}), 3.75-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.95-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.06-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=13.5,2.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.57$ $(\mathrm{q}, J=9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.13-7.39(\mathrm{~m}, 8 \mathrm{H}), 7.45(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}):(12.2,13.4)$, $28.3,(40.9,41.3),(42.3,42.8),(43.1,43.2),(52.5,53.4),(53.6,54.4),(56.7,57.6),(64.6,65.8),(66.3,67.0),(80.15,80.19)$,
$126.3,(126.8,126.9),(127.2,127.3)(2 \mathrm{C}),(127.39,127.43)(2 \mathrm{C}),(128.16,128.20)(2 \mathrm{C}), 128.5(2 \mathrm{C}),(143.9,144.2),(144.7,145.2),(154.0,154.3)$,
(207.8, 207.9). IR $v_{\max },(\mathrm{ZnSe}): 2964,2802,1699,1452,1415,1367,1325,1244,1163,762,702 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$. for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3}$: 435.2642, found: 435.2634.

(3R,3aS,8aS)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (56a)

To a solution of $50(5 \mathrm{~g}, 15.5 \mathrm{mmol}$, d.e. 75%) and (+)-10-camphorsulfonic acid ($1.8 \mathrm{~g}, 7.76 \mathrm{mmol}, 0.5 \mathrm{eq})$ in $\mathrm{TFE}(75 \mathrm{ml}) \mathrm{LiClO}_{4}$ ($12 \mathrm{~g}, 113 \mathrm{mmol}, 7.3 \mathrm{eq}$) was added followed by 37% formaldehyde solution ($2.5 \mathrm{~g}, 31 \mathrm{mmol}, 2 \mathrm{eq}$). The reaction mixture was stirred for 24 h at $70^{\circ} \mathrm{C}$. Then the solution was cooled to room temperature, poured into $5 \% \mathrm{aq}_{2} \mathrm{CO}_{3}(150 \mathrm{ml})$ and extracted with hexane-DCM 3: 1 mixture ($2 \times 150 \mathrm{ml}$). The combined organic layers were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc $\left.3: 1: 0.75\right)$ to afford a mixture of $\mathbf{5 6 a}$ and $\mathbf{5 6 b}$ contaminated with small amounts of $\mathbf{5 3 a}$ and $\mathbf{5 3 b}$ ($4.15 \mathrm{~g}, 80 \%$ totally). The mixture was dissolved in MTBE (20 ml), hexane (100 ml) was added and the solution was concentrated in vacuo to a vol. $\sim 25 \mathrm{ml}$. Then the solution was diluted with additional portion of hexane (25 ml) and maintained for 5 h at room temperature and overnight at $-20^{\circ} \mathrm{C}$. The precipitate was filtered off, washed with precooled to $0^{\circ} \mathrm{C}$ hexane and dried to afford $\mathbf{5 6 a}(1.6 \mathrm{~g}, 31 \%)$. $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 7: 3). White solid, mp $115-118^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=-32.7\left(\mathrm{c} 1, \mathrm{CHCl}_{3}\right) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.40(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, $2.44(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{ddd}, J=18.7,11.7,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{td}, J=9.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=10.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1$ H), $3.41(\mathrm{q}, ~ J=11.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.72-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{q}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-4.11(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.46(\mathrm{~m}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 14.9,41.1,45.0,55.3,59.0,65.6,66.4,66.6,76.9,126.4,127.0,127.3(2 \mathrm{C}), 127.5(2 \mathrm{C}), 128.3(2 \mathrm{C}), 128.5(2 \mathrm{C})$, 144.4, 144.7, 207.5. IR $v_{\max },(\mathrm{KBr}): 3465$ (br.), 2970, 2806, 1705, 1495, 1205, 1155, 1114, 1070, 764,758, $702 \mathrm{~cm}^{-1} . \mathrm{HRMS}(\mathrm{ESI}): m / z[\mathrm{M}+\mathrm{H}]^{+} \mathrm{calcd}$ for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}: 336.1958$, found: 336.1955 .

(3S,3aR,8aS)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (56b)

To a solution of $50(5 \mathrm{~g}, 15.5 \mathrm{mmol}, 75 \%$ d.e.) in THF (80 ml) 37% formaldehyde solution ($2.5 \mathrm{~g}, 31 \mathrm{mmol}, 2 \mathrm{eq}$) and (+)-10camphorsulfonic acid ($1.8 \mathrm{~g}, 7.76 \mathrm{mmol}, 0.5 \mathrm{eq}$) were added and the reaction mixture was stirred for $24 \mathrm{~h} \mathrm{at} 45^{\circ} \mathrm{C}$. Then the solution was cooled to room temperature, evaporated in vacuo and the residue was treated with 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}$ (50 ml) and extracted with DCM ($2 \times 50 \mathrm{ml}$). The combined organic extracts were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the residue by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 3: 1: 0.75) yielded a mixture of $\mathbf{5 6 a}$ and $\mathbf{5 6 b}$ contaminated with small amounts of $\mathbf{5 3 a}$ and $\mathbf{5 3 b}(4.45 \mathrm{~g}, 86 \%$ totally $)$. The mixture was dissolved in anhydrous $\mathrm{EtOH}(50 \mathrm{ml})$, the solution was cooled to $0^{\circ} \mathrm{C}$ and acidified with 8 M aq HBr to $\mathrm{pH} \sim 5$. The solution was concentrated in vacuo to a vol. $\sim 25 \mathrm{ml}, \mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ was added and the mixture was maintained for 1 h at $20^{\circ} \mathrm{C}$. The precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried to afford $\mathbf{5 6 b} \times \mathrm{HBr}$ contaminated with $\sim 5 \% \mathbf{5 6 a} \times \mathrm{HBr}$. The salt was transformed into free base by treating with 5% aq $\mathrm{K}_{2} \mathrm{CO}_{3}(50 \mathrm{ml})$ and extracting with $\mathrm{DCM}(2 \times 50 \mathrm{ml})$. And then hydrobromide was obtained repeatedly as above to afford $\mathbf{5 6 b} \times \mathrm{HBr}(3.1 \mathrm{~g}, 48 \%)$ in which contamination with $\mathbf{5 6 a} \times \mathrm{HBr}$ was reduced to $\sim 1.7 \%$. This product was used in the next step without additional purification. White solid, $\operatorname{mp} 205-211^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{23}=+2.5(\mathrm{c} 1, \mathrm{MeOH})$. Base: $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc $7: 3$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}{ }_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.49$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.57(\mathrm{ddd}, J=11.6,5.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=11.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{ddd}, J=11.4,10.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03-3.12(\mathrm{~m}, 1 \mathrm{H})$, $3.23(\mathrm{dd}, J=8.7,6.5,1 \mathrm{H}), 3.48-3.65(\mathrm{~m}, 4 \mathrm{H}), 3.67-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.94(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.45(\mathrm{~m}, 10 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl} \mathrm{N}_{3}, 100 \mathrm{MHz}\right), \delta(\mathrm{ppm}):$ $16.6,43.2,46.8,56.7,60.2,60.4,62.3,69.2,73.6,126.6,127.2,127.5(2 \mathrm{C}), 127.6(2 \mathrm{C}), 128.3$ (2C), 128.4 (2C), 140.6, 143.9, 208.3. IR $v_{\max },(\mathrm{KBr}):$ 3427 (br.), 2613, 2571, 1714, 1456, 1392, 1124, 985, 763, 704, $522 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}: 336.1958$, found: 336.1953 .

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (57a)

$57 \mathbf{a}(2.45 \mathrm{~g}, 92 \%)$ was prepared from $51(2.6 \mathrm{~g}, 6.16 \mathrm{mmol})$ according to the procedure for $\mathbf{2 5 a}$ with minor modifications. The reaction was carried out at $40^{\circ} \mathrm{C}$ and $\mathbf{5 7}$ a was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane-DCM-EtOAc 3: 1: 0.7). $\mathrm{R}_{\mathrm{f}} 0.5$ (hexane-EtOAc 4: 1), $[\alpha]_{\mathrm{D}}{ }^{23}-7.3(\mathrm{c}=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right), \delta(\mathrm{ppm}): 1.31(\mathrm{~s}, 4.5 \mathrm{H})$, $1.37(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 4.5 \mathrm{H}), 1.78-1.93(\mathrm{~m}, 0.5 \mathrm{H}), 1.95-2.11(\mathrm{~m}, 1.5 \mathrm{H}), 2.58-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.86$ $(\mathrm{m}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.04(\mathrm{t}, J=9.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.28(\mathrm{t}, J=8.6 \mathrm{~Hz}, 0.5 \mathrm{H})$, $3.46(\mathrm{t}, J=19.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.87(\mathrm{~m}, 1 \mathrm{H}), 4.03-4.20(\mathrm{~m}, 1.5 \mathrm{H}), 4.31(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.48(\mathrm{~d}, J=18.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.75(\mathrm{~d}, J=18.8 \mathrm{~Hz}$, $0.5 \mathrm{H}), 7.11-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(\mathrm{CDCl}, 100 \mathrm{MHz}), \delta(\mathrm{ppm}):(11.8,12.4)$, $(28.0,28.3)(3 \mathrm{C}),(33.5,34.4),(40.3,40.8),(46.6,47.0),(53.2,53.8),(56.3,56.8),(58.0,58.8), 64.6,(65.3,65.5),(80.5,80.6),(126.0,126.1), 126.7$, (127.0, 127.2) (2 C), 127.3 (2 C), $128.0(2 \mathrm{C}),(128.28,128.32)(2 \mathrm{C}),(144.05,144.14),(144.8,145.8),(154.3,155.0),(208.1,208.4)$. IR $v_{\max },(\mathrm{KBr}):$ 2990, 1705, 1460, 1425, 1375, 1352, 1275, 800, 775, $707 \mathrm{~cm}^{-1}$. HRMS (ESI): $m / z[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{3}: 435.2642$, found: 435.2639 .

Tert-butyl 4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (9). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

Tert-butyl 4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (9). ${ }^{13} \mathbf{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

4-(Phenylethynyl)tetrahydro-2H-pyran-4-ol (10). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

4-(Phenylethynyl)tetrahydro-2H-pyran-4-ol (10). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Tert-butyl 4-(phenylethynyl)-5,6-dihydropyridine-1(2H)-carboxylate (11). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

Tert-butyl 4-(phenylethynyl)-5,6-dihydropyridine-1(2H)-carboxylate (11). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

4-(Phenylethynyl)-3,6-dihydro-2H-pyran (12). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right)$

4-(Phenylethynyl)-3,6-dihydro-2H-pyran (12). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

Tert-butyl 3-(phenylethynyl)-5,6-dihydropyridine-1(2H)-carboxylate (13). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

Tert-butyl 3-(phenylethynyl)-5,6-dihydropyridine-1(2H)-carboxylate (13). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

Tert-butyl 6-(phenylethynyl)-7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (14). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

Tert-butyl 6-(phenylethynyl)-7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (14). ${ }^{13} \mathrm{C}^{\mathrm{NMR}}$ (CDCl_{3}, 100 MHz).

6-(Phenylethynyl)-3,7-dioxabicyclo[4.1.0]heptane (15). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 40 \mathrm{MHz}\right)$

6-(Phenylethynyl)-3,7-dioxabicyclo[4.1.0]heptane (15). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz)

Tert-butyl 1-(phenylethynyl)-7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (16). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 50{ }^{\circ} \mathrm{C}$)

Tert-butyl 1-(phenylethynyl)-7-oxa-3-azabicyclo[4.1.0]heptane-3-carboxylate (16). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50^{\circ} \mathrm{C}$)

(3RS,4SR)-Tert-butyl 3-(benzylamino)-4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate hydrobromide (17). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$

(3RS,4SR)-Tert-butyl 3-(benzylamino)-4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate hydrobromide (17). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 100 MHz)

(3SR,4RS)-tert-Butyl 4-(benzylamino)-3-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (17a). ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

(3SR,4RS)-tert-Butyl 4-(benzylamino)-3-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate (17a). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 10o MHz)

(3RS,4SR)-3-(Benzylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (18). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

(3RS,4RS)-4-(benzylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-3-ol (18a). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$)

(3RS,4RS)-4-(benzylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-3-ol (18a). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$)

(3SR,4SR)-Tert-butyl 4-(benzylamino)-3-hydroxy-3-(phenylethynyl)piperidine-1-carboxylate (19). ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$)

(3SR,4SR)-Tert-butyl 4-(benzylamino)-3-hydroxy-3-(phenylethynyl)piperidine-1-carboxylate (19). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz)

(3RS,4SR)-Tert-butyl 3-(benzylamino)-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate hydrobromide (20). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\boldsymbol{d}_{6}, 400 \mathrm{MHz}$)

(3RS,4SR)-Tert-butyl 3-(benzylamino)-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate hydrobromide (20). ${ }^{13}$ C NMR (DMSO- d_{6}, 100 MHz)

(3RS,4SR)-3-(Benzylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrobromide (21). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$

(3RS,4SR)-3-(Benzylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrobromide (21). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 10o MHz)

(3SR,4SR)-Tert-butyl 4-(benzylamino)-3-hydroxy-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (22). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\boldsymbol{d}_{6}, 400 \mathrm{MHz}$)

(3SR,4SR)-Tert-butyl 4-(benzylamino)-3-hydroxy-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (22). ${ }^{13}$ C NMR (DMSO- d_{6}, 100 MHz)

(3RS,3aSR,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23a). ${ }^{1} \mathrm{H}$ NMR (CDCl $\mathbf{3}^{4}, 400 \mathrm{MHz}$).

(3RS,3aSR,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23a). ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , 10o $\mathbf{M H z}$)

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b). ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$).

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz).

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo $[2,3-c]$ azepine- $7(1 \mathrm{H})$-carboxylate ($\mathbf{2 3 b}$). $\mathbf{2 D}^{1}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$)

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b). 2D ${ }^{1} \mathbf{H}-{ }^{1} \mathrm{H}-\mathrm{NOESY}(\mathrm{phase}$ sensitive, mixing time $=500 \mathrm{~ms})$

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b). 2D ${ }^{1} \mathbf{H}-{ }^{1} \mathrm{H}-\mathrm{NOESY}(\mathrm{phase}$ sensitive, mixing time $=500 \mathrm{~ms})$

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b). 2D ${ }^{\mathbf{1}} \mathbf{H}-{ }^{\mathbf{1 3}} \mathbf{C - H S Q C}(\mathrm{qphase}$ sensitive $\mathbf{J 1}(\mathrm{HC})=145 H z)$.

(3SR,3aRS,8aSR)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (23b). 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathbf{C}-\mathrm{HMBC}$ (longrange, $\left.\mathrm{J} 1(\mathrm{HC})=\mathbf{1 4 5 H z}, \mathrm{J} 2(\mathrm{HC}-\mathrm{long})=10 \mathrm{~Hz}\right)$

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (24b). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 40 \mathrm{MHz}$).

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$).

(3SR,3aRS, 8 aSR)-1-Benzyl-3-phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (24b). $2 \mathrm{D}{ }^{1} \mathbf{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time = 500ms)

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$)

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$)

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive J1 (HC)=145Hz).

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). 2D ${ }^{1} \mathrm{H}{ }^{-13} \mathrm{C}$ - HSQC (qphase sensitive J1 (HC) $=\mathbf{1 4 5 H z}$).

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). $2 \mathrm{D}{ }^{1} \mathbf{H}^{13}{ }^{13} \mathbf{C}-\mathrm{HMBC}$ (longrange, $\mathrm{J} 1(\mathrm{HC})=\mathbf{1 4 5 H z}$, $\left.\mathrm{J} 2(\mathrm{HC}-\mathrm{long})=10 \mathrm{~Hz}\right)$.

(3SR,3aRS,8aSR)-1-Benzyl-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (24b). $2 \mathrm{D}{ }^{1} \mathbf{H}^{13}{ }^{13} \mathbf{C}-\mathrm{HMBC}$ (longrange, $\mathrm{J} 1(\mathrm{HC})=\mathbf{1 4 5 H z}$, $\left.\mathrm{J} 2(\mathrm{HC}-\mathrm{long})=10 \mathrm{~Hz}\right)$.

(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (25a). ${ }^{1}{ }^{H}$ NMR ($\left.\mathbf{C D C l}_{3}, 400 \mathrm{MHz}\right)$

(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo [2,3-d]azepine-6(2H)-carboxylate (25a). 2D ${ }^{1} \mathbf{H}-{ }^{1} \mathbf{H}-\mathrm{NOESY}(\mathrm{phase}$ sensitive, mixing time $=500 \mathrm{~ms})$

(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (25a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ - HSQC (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (25a). $2 \mathrm{D}{ }^{1} \mathrm{H}{ }^{-13} \mathrm{C}$-HSQC (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (25a). 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HMBC}$ (longrange, $\left.\mathbf{J} 1(\mathrm{HC})=\mathbf{1 4 5 H z}, \mathrm{J} 2(\mathrm{HC}-\mathrm{long})=10 \mathrm{~Hz}\right)$

(3RS,3aSR,8aRS)-Tert-butyl 1-benzyl-4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (25a). 2D ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HMBC}$ (longrange, $\left.\mathbf{J} 1(\mathrm{HC})=\mathbf{1 4 5 H z}, \mathrm{J} 2(\mathrm{HC}-l o n g)=10 \mathrm{~Hz}\right)$

(3RS,3aSR,8aSR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (26a). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right)$

(3RS,3aSR,8aSR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (26a). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, $\mathbf{1 0 0} \mathbf{M H z)}$

(3SR,3aRS,8aSR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (26b). ${ }^{1} \mathrm{H}$ NMR (CDCl $\mathbf{3}_{3}, \mathbf{4 0 o} \mathbf{~ M H z) ~}$

(3SR,3aRS,8aSR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (26b). ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , $\mathbf{1 0 0} \mathbf{M H z)}$

(3RS,3aSR,8aSR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (27a). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 40 \mathrm{MHz}$).

(3RS,3aSR,8aSR)-3-Phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (27a). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 10 \mathrm{MHz}$).

(3SR,3aRS,8aSR)-3-Phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (27b). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

(3SR,3aRS,8aSR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (27b). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 40 \mathrm{MHz}$).

(3SR,3aRS,8aSR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one hydrochloride (27b). ${ }^{1}{ }^{1}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$)

(3SR,3aRS,8aSR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one hydrochloride (27b). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 100 MHz)

(3RS,3aSR,8aRS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate hydrochloride(28a). ${ }^{1}$ H NMR (DMSO- d_{6}, 40o MHz).

(3RS,3aSR,8aRS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate hydrochloride(28a). ${ }^{13}$ C NMR (DMSO- d_{6}, 10o MHz).

(3RS,4SR)-Tert-butyl 3-(allylamino)-4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate hydrobromide (31). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)$.

(3RS,4SR)-Tert-butyl 3-(allylamino)-4-hydroxy-4-(phenylethynyl)piperidine-1-carboxylate hydrobromide (31). ${ }^{13}$ C NMR (DMSO- d_{6}, 100 MHz).

(3RS,4SR)-3-(Allylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol hydrobromide (32). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)$.

(3RS,4SR)-3-(Allylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol hydrobromide (32). ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 100 \mathrm{MHz}$).

(3RS,4SR)-Tert-butyl 3-(allylamino)-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate hydrobromide (33). ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, 40o MHz).

(3RS,4SR)-Tert-butyl 3-(allylamino)-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate hydrobromide (33). ${ }^{13} \mathrm{C}$ NMR (DMSO-d \mathbf{d}_{6}, 10o MHz).

(3RS,4SR)-3-(Allylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrobromide (34). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $)$.

(3RS,4SR)-3-(Allylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrobromide (34). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $)$.

(3RS,4SR)-Tert-butyl 3-amino-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate (35). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right)$.

(3RS,4SR)-Tert-butyl 3-amino-4-hydroxy-4-((E)-styryl)piperidine-1-carboxylate (35). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 10o MHz).

(3RS,4SR)-3-Amino-4-((E)-styryl)tetrahydro-2H-pyran-4-ol hydrochloride (36). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d ${ }^{2}$).

(3RS,4SR)-3-Amino-4-((E)-styry)tetrahydro-2H-pyran-4-ol hydrochloride (36). ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-d $)$.

(3RS,4SR)-3-(Benzhydrylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (37). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 40 \mathrm{MHz}$).

(3RS,4SR)-3-(Benzhydrylamino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (37). ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz).

(3RS,4SR)-3-(Benzhydrylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (38). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

(3RS,4SR)-3-(Benzhydrylamino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (38). ${ }^{13} \mathbf{C N M R}^{\left(\mathrm{CDCl}_{3}, 100 ~ M H z\right) .}$

(3RS,3aSR,8aSR)-1-Benzhydryl-3-phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (39a). ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 40 \mathrm{MHz}\right)$.

(3RS,3aSR,8aSR)-1-Benzhydryl-3-phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (39a). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 10o MHz.

(3S,4R)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-(phenylethynyl)piperidine-1-carboxylate (40). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right)$

(3S,4R)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-(phenylethynyl)piperidine-1-carboxylate (40). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz)

(3S,4R)-3-(((R)-1-Phenylethyl)amino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (41). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

(3S,4R)-3-(((R)-1-Phenylethyl)amino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (41). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$

(3S,4S)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-(phenylethynyl)piperidine-1-carboxylate (42). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 55^{\circ} \mathrm{C}$).

(3S,4S)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-(phenylethynyl)piperidine-1-carboxylate (42). ${ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 55^{\circ} \mathrm{C}\right)$.

(3R,4S)-tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-(phenylethynyl)piperidine-1-carboxylate (43). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right)$

(3R,4S)-tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-(phenylethynyl)piperidine-1-carboxylate (43). ${ }^{13} \mathrm{C} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right)$

(3R,4S)-3-(((R)-1-Phenylethyl)amino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (44). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$).

(3R,4S)-3-(((R)-1-Phenylethyl)amino)-4-(phenylethynyl)tetrahydro-2H-pyran-4-ol (44). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$.

(3R,4R)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-(phenylethynyl)piperidine-1-carboxylate (45). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right)$.

(3R,4R)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-(phenylethynyl)piperidine-1-carboxylate (45). ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right)$.

($3 S, 4 R$)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-((E)-styryl)piperidine-1-carboxylate (46). ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathbf{C D C l}_{3}, 400 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right)$.

(3S,4R)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-((E)-styryl)piperidine-1-carboxylate (46). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathbf{C D C l}_{3}, 100 \mathrm{MHz}, 50^{\circ} \mathrm{C}\right)$.

(3S,4R)-3-(((R)-1-Phenylethyl)amino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (47). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

(3S,4R)-3-(((R)-1-Phenylethyl)amino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (47). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$.

(3S,4S)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (48). ${ }^{1} \mathbf{H}^{1}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$.

(3S,4S)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (48). ${ }^{13}$ C NMR (DMSO- d_{6}, 100 MHz).

(3R,4S)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-((E)-styryl)piperidine-1-carboxylate (49). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}, 40^{\circ} \mathrm{C}\right)$.

(3R,4S)-Tert-butyl 4-hydroxy-3-(((R)-1-phenylethyl)amino)-4-((E)-styryl)piperidine-1-carboxylate (49). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, 40^{\circ} \mathrm{C}$)

[^1](3R,4S)-3-(((R)-1-Phenylethyl)amino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (50). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.\mathbf{N}_{3}, 400 \mathrm{MHz}\right)$.

(3R,4S)-3-(((R)-1-Phenylethyl)amino)-4-((E)-styryl)tetrahydro-2H-pyran-4-ol (50). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$.

(3R,4R)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (51). ${ }^{1}$ H NMR (DMSO- d_{6}, 40o MHz).

(3R,4R)-Tert-butyl 3-hydroxy-4-(((R)-1-phenylethyl)amino)-3-((E)-styryl)piperidine-1-carboxylate hydrobromide (51). ${ }^{13}$ C NMR (DMSO- $d_{6}, 100$ MHz).

[^2](3S,3aR,8aR)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (52a). ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$).

(3S,3aR,8aR)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (52a). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz)

(3R,3aS,8aR)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (53b). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.3,400 \mathrm{MHz}\right)$.

(3R,3aS,8aR)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (53b). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 10o MHz)

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (55a). ${ }^{1} \mathrm{H}$ NMR (CDCl 3 , 40o MHz).

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate (55a). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 100 MHz).

(3R,3aS,8aS)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one (56a). ${ }^{1} \mathrm{H}$ NMR (CDCl $3,40 \mathrm{MHz}$).

(3R,3aS,8aS)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (56a). ${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$).

(3S,3aR,8aS)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (56b). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }^{2}, 400 \mathrm{MHz}\right)$.

(3S,3aR,8aS)-3-Phenyl-1-((R)-1-phenylethyl)hexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one (56b). ${ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 10o MHz).

(3S,3aR,8aS)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (54a). ${ }^{1} \mathrm{H}$ NMR (CDCl $3,400 \mathrm{MHz}$).

(3S,3aR,8aS)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (54a). ${ }^{13} \mathrm{C}$ NMR (CDCl, $\left.100 \mathrm{MHz}\right)$.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyl-1-((R)-1-phenylethyl)octahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate (57a). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.\mathbf{N O}_{3}, 400 \mathrm{MHz}\right)$.

(3S,3aR,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate hydrochloride ((+)-26a). ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$

(3S,3aR,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate hydrochloride ((+)-26a). ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 100 \mathrm{MHz}\right)$

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.\mathbf{N O}_{3}, 40 \mathrm{MHz}\right)$

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a). ${ }^{13} \mathrm{C}$ NMR (CDCl $\left.{ }_{3}, 100 \mathrm{MHz}\right)$

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $\left.=500 \mathrm{~ms}\right)$.

($3 R, 3 a S, 8 a S$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$).

(3R,3aS,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo $[2,3-c]$ azepine- $7(1 H)$-carboxylate ($(-)-26 a) .2 D^{1}{ }^{-1}{ }^{1} \mathrm{H}-\mathrm{NOESY}$ (phase sensitive, mixing time $=500 \mathrm{~ms}$)

($\mathbf{3 R , 3 a S}, 8 \mathrm{aS}$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

($\mathbf{3 R , 3 a S}, 8 \mathrm{BaS}$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). ${ }^{1}{ }^{H} \mathbf{N M R}^{\left(C_{D C l}^{3}, 400 ~ M H z\right)}$

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , 10o $\mathbf{M H z}$)

($3 R, 3 a S, 8 a R$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). $2 \mathrm{D}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$).

S188
($3 R, 3 a S, 8 a R$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). $2 \mathrm{D}^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$).

($3 R, 3 a S, 8 a R$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ($(-)$-26b). $2 \mathrm{D}^{1} \mathrm{H}^{-1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$).

($\mathbf{3 R}, 3 \mathrm{BaS}, 8 \mathrm{aR}$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). $2 \mathrm{D}{ }^{1} \mathbf{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). 2D 1H-1H-COSY.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((-)-26b). 2D $\mathbf{1 H}-1 \mathrm{H}-\mathrm{COSY}$.

(3S,3aR,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((+)-26b). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.3,400 \mathrm{MHz}\right)$

(3S,3aR,8aS)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-c]azepine-7(1H)-carboxylate ((+)-26b). ${ }^{13} \mathrm{C}$ NMR (CDCl 3 , 100 MHz)

(3R,3aS,8aS)-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$.

(3R,3aS,8aS)-3-phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$.

(3R,3aS,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$)

(3R,3aS,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-\mathrm{NOESY}$ (phase sensitive, mixing time $=500 \mathrm{~ms}$)

(3R,3aS,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). $2 \mathrm{D}^{1}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time = 500ms)

(3R,3aS,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). $2 \mathrm{D}{ }^{1}{ }^{1} \mathbf{H}^{13}{ }^{\mathbf{C}}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=\mathbf{1 4 5 H z}\right)$

(3R,3aS,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((-)-27a). $2{ }^{1}{ }^{1} \mathrm{H}^{13}{ }^{13}$ - HSQC (qphase sensitive $\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}$)

(3R,3aS,8aR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((+)-27b). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

(3R,3aS,8aR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((+)-27b). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 40 \mathrm{MHz}\right)$.

$(3 R, 3 a S, 8 a R)-3-P h e n y l h e x a h y d r o-1 H-o x e p i n o[3,4-b] p y r r o l-4(2 H)-o n e((+)-27 b) .2 D{ }^{1} H-{ }^{1} H-N O E S Y(p h a s e ~ s e n s i t i v e, ~ m i x i n g ~ t i m e=500 m s)$.

(3R,3aS,8aR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((+)-27b). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$).

(3R,3aS,8aR)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one ((+)-27b). $2 \mathrm{D}^{1} \mathrm{H}^{-1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$)

($3 R, 3 \mathrm{aS}, 8 \mathrm{aR}$)-3-Phenylhexahydro-1 H -oxepino[3,4-b]pyrrol-4(2H)-one ($(+)-27 \mathrm{~b}) .2 \mathrm{D}{ }^{1} \mathrm{H}^{13} \mathrm{C}-\mathrm{HMBC}(2 \mathrm{D} 13 \mathrm{C}\{1 \mathrm{H}\}-13 \mathrm{C}$ with CPD decoupling for sensitivity increase)

(3S,3aR,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one hydrochloride ((-)-27b). ${ }^{1}$ H NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right)$

(3S,3aR,8aS)-3-Phenylhexahydro-1H-oxepino[3,4-b]pyrrol-4(2H)-one hydrochloride ((-)-27b). ${ }^{13} \mathrm{C}$ NMR (DMSO- d_{6}, 10o MHz)

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate ((-)-28a). ${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right)$.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate ((-)-28a). ${ }^{13} \mathrm{C}$ NMR (CDCl $3,100 \mathrm{MHz}$).

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo $[2,3-d$ azepine- $6(2 H)$-carboxylate ($(-)-28 \mathrm{a}) .2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}-\mathrm{NOESY}$ (phase sensitive, mixing time $=500 \mathrm{~ms}$)

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate ((-)-28a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$-NOESY (phase sensitive, mixing time $=500 \mathrm{~ms}$)

($\mathbf{3 R , 3 a S}, 8 \mathrm{aR}$)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate ((-)-28a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

(3R,3aS,8aR)-Tert-butyl 4-oxo-3-phenyloctahydropyrrolo[2,3-d]azepine-6(2H)-carboxylate ((-)-28a). $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}-\mathrm{HSQC}$ (qphase sensitive $\left.\mathrm{J} 1(\mathrm{HC})=145 \mathrm{~Hz}\right)$.

Single Crystal X-ray Diffraction Data

Checkcif for compound 24b

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	: $\mathrm{C}-\mathrm{C}=0.0025 \mathrm{~A}$	Wavelength=1.54180
Cell:	$a=5.7640$ (5)	$\mathrm{b}=11.1643(7) \quad \mathrm{c}=14.7076$ (10)
	alpha=70.895(5)	beta=81.858(6) gamma=85.321(6)
Temperature:	295 K	
	Calculated	Reported
Volume	884.68(12)	884.68(12)
Space group	P -1	P -1
Hall group	-P 1	-P 1
Moiety formula	C21 H23 N O2	C21 H23 N O2
Sum formula	C21 H23 N O2	C21 H23 N O2
Mr	321.40	321.40
Dx,g cm-3	1.207	1.207
z	2	2
Mu (mm-1)	0.607	0.607
F000	344.0	344.0
F000'	344.97	
h, k, lmax	7,13,18	7,13,17
Nref	3421	3150
Tmin, Tmax	0.930,0.953	
Tmin'	0.913	
Correction meth	hod= Not given	
Data completene	ess $=0.921$	Theta $(\max)=71.110$
$R($ reflections $)=$	$=0.0500(1071)$	wR2 (reflections) $=0.1014(3150)$
$S=0.600$	Npar=	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level B
PLAT026_ALERT_3_B Ratio Observed / Unique Reflections (too) Low .. 34\% Check PLAT230_ALERT_2_B Hirshfeld Test Diff for C14 --C15 . 9.3 s.u. PLAT230_ALERT_2_B Hirshfeld Test Diff for C32 --C37 . 9.7 s.u.

```
    Alert level C
GOODFO1_ALERT_2_C The least squares goodness of fit parameter lies
            outside the range 0.80 <> 2.00
    Goodness of fit given = 0.600
PLAT165_ALERT_3_C Nr. of Status R Flagged Non-Hydrogen Atoms ..... }12\mathrm{ Note
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of C32 Check
```

Alert level G
PLAT005_ALERT_5_G No Embedded Refinement Details Found in the CIF Please Do ! PLAT793_ALERT_4_G Model has Chirality at C1 (Centro SPGR) S Verify PLAT793_ALERT_4_G Model has Chirality at C4 (Centro SPGR) S Verify PLAT793_ALERT_4_G Model has Chirality at C10 (Centro SPGR) R Verify PLAT899_ALERT_4_G SHELXL97 is Deprecated and Succeeded by SHELXL/ 2018 Note

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 ~ A L E R T ~ t y p e ~ 2 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ m o d e l ~ m a y ~ b e ~ w r o n g ~ o r ~ d e f i c i e n t
ALERT type 3 Indicator that the structure quality may be low
4 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n
1 ALERT type 5 Informative message, check
```


checkCIF publication errors

Alert level A

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
Abstract of paper in English.

Alert level G
PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.

ALERT level $\mathbf{A}=$ Data missing that is essential or data in wrong format
1 ALERT level $\mathbf{G}=$ General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBLO06_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
_vrf_PLAT029_I
;
PROBLEM: _diffrn_measured_fraction_theta_full value Low . 0.921 Why?
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF viathe web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 04/06/2020; check.def file version of $02 / 06 / 2020$

Datablock I - ellipsoid plot

Checkcif for compound 25a

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0022 \mathrm{~A}$	Wavelength=1.54184
Cell:	$a=11.490$ (2)	
	alpha=90	beta=90 gamma $=90$
Temperature:	295 K	
	Calculated	Reported
Volume	4653.8(14)	4653.8(14)
Space group	P b c a	P b c a
Hall group	-P 2ac 2ab	-P 2ac 2ab
Moiety formula	C26 H32 N2 O3	C26 H32 N2 O3
Sum formula	C26 H32 N2 O3	C26 H32 N2 O3
Mr	420.54	420.54
Dx,g cm-3	1.200	1.200
Z	8	8
Mu (mm-1)	0.622	0.622
F000	1808.0	1808.0
F000'	1813.17	
h, k, lmax	14,21,29	14,21,29
Nref	4786	4488
Tmin, Tmax	0.883,0.883	0.709,0.957
Tmin'	0.883	

```
Correction method= # Reported T Limits: Tmin=0.709 Tmax=0.957
AbsCorr = REFDELF
Data completeness= 0.938 Theta(max)=74.910
R(reflections)= 0.0391( 3469) wR2(reflections)= 0.1056( 4488)
S = 1.028 Npar= 280
```

The following ALERTS were generated. Each ALERT has the format
test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level B

PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full value Low . 0.952 Why?
PLAT230_ALERT_2_B Hirshfeld Test Diff for C14 --C15 . 12.0 s.u.

Alert level G

PLAT793_ALERT_4_G	Model has Chirality at C3	(Centro SPGR)	S Verify
PLAT793_ALERT_4_G	Model has Chirality at C4	(Centro SPGR)	R Verify
PLAT793_ALERT_4_G	Model has Chirality at C10	(Centro SPGR)	S Verify
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity	1.0 Low	

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
ALERT type 5 Informative message, check
```


checkCIF publication errors

Alert level A

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper. PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es). PUBL012_ALERT_1_A _publ_section_abstract is missing.

Abstract of paper in English.

Alert level G

PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.

```
4 ~ A L E R T ~ l e v e l ~ A ~ = ~ D a t a ~ m i s s i n g ~ t h a t ~ i s ~ e s s e n t i a l ~ o r ~ d a t a ~ i n ~ w r o n g ~ f o r m a t ~
ALERT level G = General alerts. Data that may be required is missing
```


Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 04/06/2020; check.def file version of 02/06/2020

Datablock I - ellipsoid plot

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0103 \mathrm{~A}$	Wavelength=1.54180
Cell:	$a=5.7669$ (2)	$\mathrm{b}=13.5407$ (5) $\mathrm{c}=31.6039$ (11)
	alpha=90	beta=90 gamma=90
Temperature:	295 K	
	Calculated	Reported
Volume	2467.88(15)	2467.88(15)
Space group	P 212121	P 212121
Hall group	P 2ac 2 ab	P 2ac 2 ab
Moiety formula	C26 H34 N2 O3	C26 H34 N2 O3
Sum formula	C26 H34 N2 O3	C26 H34 N2 O3
Mr	422.55	422.55
Dx, 9 cm-3	1.137	1.137
Z	4	4
Mu (mm-1)	0.586	0.586
F000	912.0	912.0
F000'	914.58	
h, k, lmax	7,16,38	7,16,38
Nref	4681[2726]	4579
Tmin, Tmax	0.889,0.889	0.928,0.943
Tmin'	0.889	

```
Correction method= # Reported T Limits: Tmin=0.928 Tmax=0.943
AbsCorr = REFDELF
Data completeness= 1.68/0.98 Theta(max)= 70.348
R(reflections)= 0.0735( 2491) wR2(reflections)= 0.1904( 4579)
S = 0.848 Npar= 280
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C

STRVA01_ALERT_2_C
Chirality of atom sites is inverted?
From the CIF: _refine_ls_abs_structure_Flack 0.800
From the CIF: _refine_ls_abs_structure_Flack_su 0.600
PLAT220_ALERT_2_C NonSolvent Resd 1 C Ueq(max) / Ueq(min) Range
PLAT241_ALERT_2_C High 'MainMol' Ueq as Compared to Neighbors of
3.8 Ratio

MainMol Ueq as Compared to Neighbors of
C36
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of
C13 Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of
C34 Check
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighbors of
C35 Check
2.3 Note

PLAT250_ALERT_2_C
Large U3/U1 Ratio for Average U(i,j) Tensor
0.113 Check

PLAT260_ALERT_2_C Large Average Ueq of Residue Including O11
PLAT420_ALERT_2_C D-H Without Acceptor N31 --H31 . Please Check

PLAT907_ALERT_2_C
Flack x > 0.5, Structure Needs to be Inverted? .
0.80 Check

Alert level G

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 2 Report
PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.600 Report
PLAT791_ALERT_4_G Model has Chirality at C3 (Sohnke SpGr) S Verify
PLAT791_ALERT_4_G Model has Chirality at C4 (Sohnke SpGr) R Verify
PLAT791_ALERT_4_G Model has Chirality at C32 (Sohnke SpGr) R Verify

PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 1.7 Low

```
O ALERT level A = Most likely a serious problem - resolve or explain
2 ALERT level B = A potentially serious problem, consider carefully
10 ALERT level \(\mathbf{C}=\) Check. Ensure it is not caused by an omission or oversight
    6 ALERT level \(\mathbf{G}=\) General information/check it is not something unexpected
    0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
    1 ALERT type 2 Indicator that the structure model may be wrong or deficient
    ALERT type 3 Indicator that the structure quality may be low
    ALERT type 4 Improvement, methodology, query or suggestion
    ALERT type 5 Informative message, check
```


checkCIF publication errors

Alert level A

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
Abstract of paper in English.

Alert level G
PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.

4 ALERT level $\mathbf{A}=$ Data missing that is essential or data in wrong format
1 ALERT level $\mathbf{G}=$ General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 04/06/2020; check.def file version of $02 / 06 / 2020$

Datablock I - ellipsoid plot

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

Bond precision:	$\mathrm{C}-\mathrm{C}=0.0143 \mathrm{~A}$	Wavele	=0.71073
Cell:	$a=10.2800$ (4)	$\mathrm{b}=10.8668$ (5)	$\mathrm{C}=17.8313$ (8)
	alpha=90	beta=90	gamma $=90$
Temperature:	295 K		
	Calculated	Repor	
Volume	1991.95(15)	1991	
Space group	P 212121	P 21	
Hall group	P 2 ac 2 ab	P 2 ac	
Moiety formula	C21 H26 N O2, Br	C21	N O2, Br
Sum formula	C21 H26 Br N O2	C21	Br N O 2
Mr	404.33	404.	
Dx, 9 cm-3	1.348	1.348	
Z	4	4	
Mu (mm-1)	2.077	2.07	
F000	840.0	840.	
F000'	839.16		
h, k, lmax	14,15,25	14,15	
Nref	6352[3562]	6277	
Tmin, Tmax	0.667,0.660	0.79	813
Tmin'	0.654		
Correction meth AbsCorr = REFDE	$\begin{aligned} & \text { od= \# Reported T } \\ & \text { LF } \end{aligned}$	imits: Tmin=0	$\operatorname{Tmax}=0.813$
Data completene	ss= $1.76 / 0.99$	Theta (max) =	
$\mathrm{R}($ reflections $)=$	$0.0505(1856)$	wR2 (reflecti	$=0.1329(6277)$
$S=0.659$	Npar=	29	

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C

GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00
Goodness of fit given $=\quad 0.659$
PLAT234_ALERT_4_C Large Hirshfeld Difference N31 --C3 . 0.16 Ang.
PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds 0.01429 Ang.
PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. \# 1 Note
C21 H26 N O2

Alert level G

PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms 2 Report
PLAT791_ALERT_4_G Model has Chirality at C3 (Sohnke SpGr) S Verify
PLAT791_ALERT_4_G Model has Chirality at C4 (Sohnke SpGr) R Verify

PLAT791_ALERT_4_G Model has Chirality at C32 (Sohnke SpGr) R Verify PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 1.8 Low

```
A ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
A ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
O ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
5 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n
1 ALERT type 5 Informative message, check
```


checkCIF publication errors

Alert level A

e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper. PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es). PUBL012_ALERT_1_A _publ_section_abstract is missing.

Abstract of paper in English.

Alert level G
PUBL017_ALERT_1_G The _publ_section_references section is missing or
empty.

4 ALERT level A = Data missing that is essential or data in wrong format
ALERT level $\mathbf{G}=$ General alerts. Data that may be required is missing

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 04/06/2020; check.def file version of 02/06/2020

Datablock I - ellipsoid plot

Checkcif for compound 48

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: I

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level A
PLAT026_ALERT_3_A Ratio Observed / Unique Reflections (too) Low .. 26\% Check

Author Response: The crystals were of very-very poor quality

Alert level G

PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite	7 Note
PLAT003_ALERT_2_G	Number of Uiso or Uij Restrained non-H Atoms	15 Report
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms	3 Report
PLAT171_ALERT_4_G	The CIF-Embedded .res File Contains EADP Records	4 Report
PLAT176_ALERT_4_G	The CIF-Embedded .res File Contains SADI Records	3 Report
PLAT186_ALERT_4_G	The CIF-Embedded .res File Contains ISOR Records	1 Report
PLAT791_ALERT_4_G	Model has Chirality at C3 (Sohnke SpGr)	S Verify
PLAT791_ALERT_4_G	Model has Chirality at C4 (Sohnke SpGr)	S Verify
PLAT791_ALERT_4_G	Model has Chirality at C41 (Sohnke SpGr)	R Verify
PLAT860_ALERT_3_G	Number of Least-Squares Restraints	97 Note
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity	1.7 Low

[^3]```
16 ALERT type 2 Indicator that the structure model may be wrong or deficient
4 ~ A L E R T ~ t y p e ~ 3 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ q u a l i t y ~ m a y ~ b e ~ l o w ~
1 1 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n
 1 ALERT type 5 Informative message, check
```


## checkCIF publication errors

```
 Alert level A
PUBL006_ALERT_1_A _publ_requested_journal is missing
 e.g. 'Acta Crystallographica Section C'
PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es).
PUBL012_ALERT_1_A _publ_section_abstract is missing.
 Abstract of paper in English.
```


## Alert level G

PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.

```
ALERT level \(A=\) Data missing that is essential or data in wrong format
ALERT level \(\mathbf{G}=\) General alerts. Data that may be required is missing
```


## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

## Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
```

```
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

## PLATON version of 04/06/2020; check.def file version of 02/06/2020



## Checkcif for compound 53b

## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: I

| Bond precision: | $\mathrm{C}-\mathrm{C}=0.0026 \mathrm{~A}$ | Wavelength=1.54180 |
| :---: | :---: | :---: |
| Cell: | $a=5.6234$ (2) | $b=15.5257(5) \quad c=21.3791(5)$ |
|  | alpha=90 | beta=90 gamma $=90$ |
| Temperature: | 295 K |  |
|  | Calculated | Reported |
| Volume | 1866.55(10) | 1866.55(10) |
| Space group | P 212121 | P 212121 |
| Hall group | P 2 ac 2 ab | P 2ac 2 ab |
| Moiety formula | C22 H25 N O2 | C22 H25 N O2 |
| Sum formula | C22 H25 N O2 | C22 H25 N O2 |
| Mr | 335.43 | 335.43 |
| Dx, 9 cm-3 | 1.194 | 1.194 |
| Z | 4 | 4 |
| Mu (mm-1) | 0.595 | 0.595 |
| F000 | 720.0 | 720.0 |
| F000' | 722.01 |  |
| h, k, lmax | 6,19,26 | 6,19,26 |
| Nref | 3621[ 2116] | 2114 |
| Tmin, Tmax | 0.931,0.971 |  |
| Tmin' | 0.915 |  |
| Correction method= Not given |  |  |
| Data completeness= 1.00/0.58 |  | Theta $(\max )=71.230$ |
| R (reflections $)=0.0407(1112)$ |  | wR2(reflections) $=0.0980(2114)$ |
| $S=0.549$ | Npar= |  |

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.
outside the range 0.60 <> 4.00
Goodness of fit given $=0.549$

## Alert level C

| PLAT086_ALERT_2 | Value | Too Low or Not Given) | 0.55 Chec |
| :---: | :---: | :---: | :---: |
| PLAT165_ALERT_3_C | Nr. of Status R Flagged | Non-Hydrogen Atoms | 12 Note |
| PLAT230_ALERT_2_C | Hirshfeld Test Diff for | C7 --C8 | 5.7 |
| PLAT230_ALERT_2_C | Hirshfeld Test Diff for | C13 --C14 | 6.7 |
| PLAT230_ALERT_2_C | Hirshfeld Test Diff for | C35 --C36 | 5.5 |
| PLAT241_ALERT_2_C | High 'MainMol' Ueq as | Compared to Neighbors of | C7 Ch |

## Alert level G

| PLAT005_ALERT_5_G | No Embedded Refinement Details Found in the CIF | Please Do ! |  |
| :--- | :--- | :--- | :--- | ---: |
| PLAT791_ALERT_4_G | Model has Chirality at C1 | (Sohnke SpGr) | R Verify |
| PLAT791_ALERT_4_G | Model has Chirality at C4 | (Sohnke SpGr) | R Verify |
| PLAT791_ALERT_4_G | Model has Chirality at C10 | (Sohnke SpGr) | S Verify |
| PLAT791_ALERT_4_G | Model has Chirality at C31 | (Sohnke SpGr) | R Verify |
| PLAT981_ALERT_1_G | No non-zero f" Anomalous Scattering Values Found | Please Check |  |

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```


## checkCIF publication errors

## Alert level A

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es). PUBL012_ALERT_1_A _publ_section_abstract is missing.

Abstract of paper in English.

## Alert level G

PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.

[^4]
## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

## Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 04/06/2020; check.def file version of 02/06/2020

Datablock I - ellipsoid plot


## Checkcif for compound 55a

## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: I

| Bond precision: | $C-C=0.0088 \mathrm{~A}$ | Wavelength=1.54180 |
| :---: | :---: | :---: |
| Cell: | $a=5.8222$ (2) | $b=18.1399$ (5) c= 23.3280 (8) |
|  | alpha=90 | beta=90 gamma=90 |
| Temperature: | 295 K |  |
|  | Calculated | Reported |
| Volume | 2463.77(14) | 2463.77(14) |
| Space group | P 212121 | P 212121 |
| Hall group | P 2ac 2 ab | P 2ac 2 ab |
| Moiety formula | C27 H34 N2 O3 | C27 H34 N2 O3 |
| Sum formula | C27 H34 N2 O3 | C27 H34 N2 O3 |
| Mr | 434.56 | 434.56 |
| Dx,g cm-3 | 1.172 | 1.172 |
| Z | 4 | 4 |
| Mu (mm-1) | 0.602 | 0.602 |
| F000 | 936.0 | 936.0 |
| F000' | 938.65 |  |
| h, k, lmax | 7,22,28 | 7,22,28 |
| Nref | 4690[ 2720] | 4629 |
| Tmin, Tmax | 0.887,0.887 | 0.940,0.944 |
| Tmin' | 0.887 |  |

```
Correction method= # Reported T Limits: Tmin=0.940 Tmax=0.944
AbsCorr = REFDELF
Data completeness= 1.70/0.99 Theta(max)= 70.147
R(reflections)=0.0531(1574) wR2(reflections)=0.1377(4629)
S = 0.527 Npar= 289
```

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level B
GOODF01_ALERT_2_B The least squares goodness of fit parameter lies outside the range 0.60 <> 4.00
Goodness of fit given $=0.527$
PLAT026_ALERT_3_B Ratio Observed / Unique Reflections (too) Low .. 34\% Check

## Alert level C

Flack parameter is too small
From the CIF: _refine_ls_abs_structure_Flack -0.900
From the CIF: _refine_ls_abs_structure_Flack_su 0.600
PLAT086_ALERT_2_C Unsatisfactory S Value (Too Low or Not Given) .. 0.53 Check
PLAT234_ALERT_4_C Large Hirshfeld Difference C83 --C86 .
0.17 Ang.

C83 Check
PLAT340_ALERT_3_C Low Bond Precision on $C-C$ Bonds ..................
0.0088 Ang.

## Alert level G

PLAT032_ALERT_4_G Std. Uncertainty on Flack Parameter Value High . 0.600 Report
PLAT791_ALERT_4_G Model has Chirality at C3 (Sohnke SpGr) R Verify
PLAT791_ALERT_4_G Model has Chirality at C4 (Sohnke SpGr) S Verify
PLAT791_ALERT_4_G Model has Chirality at C10 (Sohnke SpGr) S Verify

PLAT791_ALERT_4_G Model has Chirality at C11 (Sohnke SpGr) R Verify
PLAT941_ALERT_3_G Average HKL Measurement Multiplicity
1.7 Low

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
ALERT type 3 Indicator that the structure quality may be low
ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
```


## checkCIF publication errors

## Alert level $A$

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper. PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es). PUBL012_ALERT_1_A _publ_section_abstract is missing.

Abstract of paper in English.

## Alert level G

PUBL017_ALERT_1_G The _publ_section_references section is missing or
empty.

```
ALERT level A = Data missing that is essential or data in wrong format
ALERT level G = General alerts. Data that may be required is missing
```


## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

## Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

## PLATON version of 04/06/2020; check.def file version of 02/06/2020

## Datablock I - ellipsoid plot



## Checkcif for compound 56a

## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: I

| Bond precision: | $\mathrm{C}-\mathrm{C}=0.0019 \mathrm{~A}$ | Wavelength=1.54180 |
| :---: | :---: | :---: |
| Cell: | $a=5.7280$ (1) | $\mathrm{b}=16.4639$ (3) $\mathrm{C}=19.5056$ ( 5 ) |
|  | alpha=90 | beta=90 gamma=90 |
| Temperature: | 295 K |  |
|  | Calculated | Reported |
| Volume | 1839.48(7) | 1839.48(7) |
| Space group | P 212121 | P 212121 |
| Hall group | P 2ac 2 ab | P 2 ac 2 ab |
| Moiety formula | C22 H25 N O2 | C22 H25 N O2 |
| Sum formula | C22 H25 N O2 | C22 H25 N O2 |
| Mr | 335.43 | 335.43 |
| Dx, $9 \mathrm{~cm}-3$ | 1.211 | 1.211 |
| Z | 4 | 4 |
| Mu (mm-1) | 0.603 | 0.603 |
| F000 | 720.0 | 720.0 |
| F000' | 722.01 |  |
| h, k, lmax | 7,20,24 | 7,20,23 |
| Nref | 3598[ 2101] | 2085 |
| Tmin, Tmax | 0.897,0.941 |  |
| Tmin' | 0.860 |  |
| Correction method= Not given |  |  |
| Data completeness $=0.99 / 0.58$ |  | Theta $(\max )=71.880$ |
| R (reflections) $=0.0507(1849)$ |  | wR2 (reflections) $=0.1316(2085)$ |
| $S=1.053$ | Npar= |  |

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.


## Alert level G

| 05_ALERT_5 | No Embedded Refinement Details Found in the CIF | Please Do |
| :---: | :---: | :---: |
| PLAT791_ALERT_4_G | Model has Chirality at C1 (Sohnke SpGr) | R Verify |
| PLAT791_ALERT_4_G | Model has Chirality at C4 (Sohnke SpGr) | S Verify |
| PLAT791_ALERT_4_G | Model has Chirality at C10 (Sohnke SpGr) | S Verify |
| PLAT791_ALERT_4_G | Model has Chirality at C31 (Sohnke SpGr) | R Verify |
| PLAT981_ALERT_1 | No non-zero f" Anomalous Scattering Values Found | Please Ch |

```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
ALERT level G = General information/check it is not something unexpected
ALERT type 1 CIF construction/syntax error, inconsistent or missing data
ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
4 ALERT type 4 Improvement, methodology, query or suggestion
1 ALERT type 5 Informative message, check
```


## checkCIF publication errors

## Alert level A

PUBL006_ALERT_1_A _publ_requested_journal is missing
e.g. 'Acta Crystallographica Section C'

PUBL008_ALERT_1_A _publ_section_title is missing. Title of paper.
PUBL010_ALERT_1_A _publ_author_address is missing. Author(s) address(es). PUBL012_ALERT_1_A _publ_section_abstract is missing.

Abstract of paper in English.

## Alert level G

PUBL017_ALERT_1_G The _publ_section_references section is missing or empty.

```
4 ALERT level A = Data missing that is essential or data in wrong format
ALERT level G = General alerts. Data that may be required is missing
```


## Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

## Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
;
_vrf_PUBL008_GLOBAL
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
;
_vrf_PUBL010_GLOBAL
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
_vrf_PUBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 04/06/2020; check.def file version of 02/06/2020

Datablock I - ellipsoid plot


## GC/MS-Traces compounds



CHROM L 4 \#127-132 RT: 2.68-2.76 AV: 3 NL: 2.27E4
F: $\{0,0\}+c$ APCI corona sid $=30.00$ det $=1200.00$ Full ms [85.00-1000.00]



N-Boc-23a
Racemate 200
$300 \quad 350$
401.39
$\begin{array}{llllllllllllllllllll}457.29 & 478.93 & 528.75 & 552.31 & 590.06 & 630.22 & 671.46 & 702.81 & 733.50 & 772.11 & 802.59 & 838.09 & 873.50 & 907.89 & 944.28 & 981.51\end{array}$
250
400
450
500
600
m/z




Fiv:430-438 AV:3 F: CAPCiminn des=120DO Full me [\$50-10000]

N-4TSEA
L_4 200G1日1ZIEEJR1D-213
Fi=477-4.51 AV:2 F:90. 1

cet=12000 Full mB
[5in0-1000. D0]
Area \%
50.2
49.8

Peak Area
RT
30.31
4.40
30.05
4.50


L-4_1 \#128-135 RT: 2.72-2.85 AV: 4 NL: 1.50E5


L-4_1_OD \#213-219 RT: 4.51-4.64 AV: 4 NL: 2.52E5

Area \%
Peak Area
RT
100
1510416
4.55
RT: 0.00-5.03


-NL: 2.71E5
$\mathrm{m} / \mathrm{z}=421.66-436.47 \mathrm{~F}:\{0,0\}+\mathrm{c}$ APCI corona sid $=30.00$ det $=1200.00$ Full ms [85.00-1000.00] MS L-4_2
$\mathrm{m} / \mathrm{z}=163.00-1000.00 \mathrm{~F}:\{0,1\}$ - c APCI corona


L-4_2 \#129-133 RT: 2.72-2.81 AV: 3 NL: 1.89E5

RT: 0.00-5.05
10000

NL: 1.41E
Total Scan PDA L-4_2_OD

NL: 5.19E5
2=419.55-466.10 F: $\{0,0\}+\mathrm{c}$ APCl corona MS L-4_2_OD

NL: 7.66E5
$\mathrm{m} / \mathrm{z}=163.00-1000.00 \mathrm{~F}:\{0,1\}$ - c APCI corona sid $=30.00$ det $=1200.00$ Full ms [85.00-1000.00 L-4_2_OD

A/D Card Ch. 1 A/D card L-4_2_OD
L-4_2_OD \#216-222 RT: 4.60-4.68 AV: 3 NL: 3.99E5

m/z

Area \%
100

Peak Area
2102009

RT
4.64


L-5 \#128-133 RT: 2.72-2.81 AV: 3 NL: 8.23E5
F: $\{0,0\}+c$ APCI corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]





## L 5-1 \#128-135 RT: 2.72-2.85 AV: 4 NL: 3.21E5

F: $\{0,0\}+c$ APCI corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]



L_7-1 \#114-119 RT: 2.42-2.51 AV: 3 NL: 6.70E5




NL: 6.34E5
L_7-1_OD\#205-212 RT:
4.34-4.47 AV: $4 \mathrm{~F}:\{0,0\}+\mathrm{c}$ APCI corona sid=30.00 det $=1200.00$ Full ms [85.00-1000.00]

NL: 1.36E5
L 7-1 OD\#214-217 RT:
4.55-4.59 AV: $2 \mathrm{~F}:\{0,0\}+\mathrm{c}$

APCI corona sid=30.00
det=1200.00 Full ms [85.00-1000.00]


## N-Boc-(+)-27a

Enantiomer \#1
( contains $\sim 10 \%$ of N -Boc- $-(+$ )-27b)


## L_7-2 \#113-118 RT: 2.38-2.47 AV: 3 NL: 6.62E5

F: $\{0,0\}+c$ APCI corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]


## N-Boc-(-)-27a

Enantiomer \#2





L-6 \#113-121 RT: 2.38-2.55 AV: 5 NL: 6.37E5
F: $\{0,0\}+c$ APCI corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]



N-Boc-27b
Racemate


| 664.38 | 698.92 | 742.87 | 764.56 | 828.38 | 855.11 | 895.46 | 919.44 | 956.63 | 991.31 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |



## L_6-2 \#116-120 RT: 2.47-2.51 AV: 2 NL: 7.41E5



L_6-2_OD \#220-227 RT: 4.68-4.81 AV: 4 NL: 7.38E5


| Area \% | Peak Area | RT |
| :--- | :--- | :--- |
| 100 | 14993244 | 4.72 |





L-6_1 \#115-121 RT: 2.42-2.55 AV: 4 NL: 1.04E6
F: $\{0,0\}+c$ APCI corona $\operatorname{sid}=30.00$ det $=1200.00$ Full ms [85.00-1000.00]


## N-Boc-(+)-27b

Enantiomer \#1


${ }^{2}$



## L_8 \#129-134 RT: 2.72-2.81 AV: 3 NL: 6.14E5

F: $\{0,0\}+c$ APCI corona sid $=30.00$ det $=1200.00$ Full ms [85.00-1000.00]


Racemate
$\begin{aligned} & 20 \\ & 20= \\ & 20= \\ & 10\end{aligned}$


RT: $0.00-5.01$
L_8_OD \#212-220 RT: 4.51-4.64 AV: 4 NL: 6.87E5
F: $\{0,0\}+c$ APCI corona sid $=30.00$ det $=1200.00$ Full ms [85.00-1000.00]


| Area $\%$ | Peak Area | RT |
| :--- | :--- | :--- |
| 48 | 4944093 | 4.59 |
| 52 | 5356101 | 4.64 |



L_8-1 \#127-134 RT: 2.68-2.81 AV: 4 NL: 5.75E5
F: $\{0,0\}+c$ APCI corona sid $=30.00$ det $=1200.00$ Full ms [85.00-1000.00]

RT: 0.00-5.00

L_8-1_OD \#210-217 RT: 4.47-4.60 AV: 4 NL: 6.31E5
$\mathrm{F}:\{0,0\}+\mathrm{c} \mathrm{APCl}$ corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]

| Area \% | Peak Area |
| :--- | :--- |
| 100 | 9477941 |



## L_8-2 \#127-135 RT: 2.68-2.85 AV: 5 NL: 5.79E5

F: $\{0,0\}+c$ APCI corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]


Enantiomer \#2
re $20=$


## L_8-2_OD \#212-221 RT: 4.51-4.68 AV: 5 NL: 5.76E5

F: $\{0,0\}+c$ APCl corona sid=30.00 det=1200.00 Full ms [85.00-1000.00]


## Enantiomer \#2

| Area $\%$ | Peak Area | RT |
| :--- | :--- | :--- |
| 100 | 10161484 | 4.59 |


[^0]:    ${ }^{1}$ Bromide 5 was prepared from 3-bromopyridine by a method described in: O.O. Grygorenko, O.V. Hryshchuk, Y.O. Kuchkovska, A.V. Tymtsunik, A.O. Varenyk, Y. Yurov, Eur. J. Org. Chem., 2020, 2020, 2217-2224. Bromide 5 was commercially available. All physical and spectral characteristics for Bromide 5 were in accordance with: O.O. Grygorenko, O.V. Hryshchuk, Y.O. Kuchkovska, A.V. Tymtsunik, A.O. Varenyk, Y. Yurov, Eur. J. Org. Chem., 2020, 2020, 2217-2224..

[^1]:    

[^2]:    $\begin{array}{lllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110\end{array}$ Chernical Shift (pprm)

[^3]:    ALERT level $A=$ Most likely a serious problem - resolve or explain
    5 ALERT level B = A potentially serious problem, consider carefully
    15 ALERT level C = Check. Ensure it is not caused by an omission or oversight
    11 ALERT level $G=$ General information/check it is not something unexpected
    0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data

[^4]:    ALERT level A = Data missing that is essential or data in wrong format
    1 ALERT level $\mathbf{G}=$ General alerts. Data that may be required is missing

