Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Material

Linear Maltodextrin Polymer-folic Acid Modified Graphene Oxide Nanoparticles for Targeted Delivery and pH/Photothermal-Sensitive Release of Hydrophobic Anticancer Drug in Tumor Cells

Xiaoning Li^a, Huirui zhu^a, Zihan Xing^a, Tao Gong^{*a}, Meining Li^a, Dan Su^a, Wenting Liang ^{*b} and Rui Guo^{*a}

 ^{a.} Department of biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China; gyt830626@163.com (T. G.); <u>15834151276@139.com</u> (R.G.).
 ^{b.} Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China; <u>liangwt@sxu.edu.cn</u> (W.L.).
 Xiaoning Li and Huirui Zhu contributed equally to this study. 1. Lagergren's pseudo-first-order kinetic model (Equation S1) and Ho's pseudo-second-order model (Equation

S2)

$$ln(q_e - q_t) = ln(q_e) - k_1 t \tag{1}$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{t}{q_e}$$
(2)

where, in Eq (1) and (2): q_e (mg g⁻¹) is equilibrium adsorption capacity; q_t (mg g⁻¹) is the drug loading at different

time points; t (min) is the drug loading time; k_1 and k_2 are kinetic constants.

2. Langmuir isotherm adsorption model (Equation S3) and Freundlich isotherm adsorption model (Equation S4)

$$\frac{C_e}{q_e} = \frac{C_e}{q_m} + \frac{1}{q_m K_L} \tag{3}$$

$$lnq_e = lnK_f + \frac{1}{n}lnC_e \tag{4}$$

where, in Eq (3) and (4): C_e (mg L⁻¹) is the mass concentration at the time of drug loading equilibrium; q_m (mg g⁻¹) is the drug load in the saturated state; q_e (mg g⁻¹) is the drug load at equilibrium; K_L (L mg⁻¹) is the dissociation constant; K_f is the Freundlich constant; 1/n is the Freundlich component factor.

Figure S1. Plot of standard curve for DOX solutions with different concentrations.

Pesudo-first-order model			Pesudo-second-order model		
q _e (mg g⁻¹)	k₁ (min ⁻¹)	R ²	q _e (mg g⁻¹)	k ₂ (g mg ⁻¹ min ⁻¹)	R ²
6.102	0.01093	0.9308	39.278	0.00723	0.9999

Table S1 The pharmacokinetic parameters of DOX on GO@LM-SP-FA.

Langmuir isotherm model			Freundlich isotherm model		
q _m (mg g ⁻¹)	K _L (L mg ⁻¹)	R ²	n	K _f (L g ⁻¹)	R ²
1789.027	0.101	-0.0798	0.679	57.016	0.9429

 Table S2 Related parameters of Langmuir and Freundlich isotherm adsorption models of DOX by GO@LM-SP-FA.