Cellulose-supported hyper-crosslinked Ltryptophan as an efficient chiral catalyst support for improved catalytic performance

Yaodong Wang,¹ Yudan Wang,^{1*}Lijia Liu,^{1,2*} Kexiao Sang,¹ Chunhong Zhang,^{1,2} Guoxing Yang^{3*}

¹Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China.

² Yantai Research Institute and Graduate School of Harbin Engineering University, Yantai, 264006, China;

³Daqing Petrochemical Research Center, Petrochemical Research Institute, PetroChina Corporation, Daqing 163000, China;

E-mail: yudanwang@hrbeu.edu.cn (Y. Wang); liulijia@hrbeu.edu.cn (L. Liu); ygx459@petrochina.com.cn (G. Yang)

Content

S1 Experimental

Figure S1 Optical microscope image (A-C) and SEM image of cellulose (D-F)

Figure S2 FT-IR spectra of HCP-PS-(L)Trp, HCP-Silica-NH₂-(L)Trp, HCP-Silica-COOH-(L)Trp, HCP-Zeolite-(L)Trp, HCP-SBA-15-(L)Trp and HCP-Wood-(L)Trp.

Figure S3 TEM images of HCP-Silica-COOH-(L)Trp (A B), HCP-SBA-15-(L)Trp (C D), HCP-Zeolite-(L)Trp (E F) and HCP-Wood-(L)Trp (G H).

Figure S4 SEM and EDS images of HCP-Silica-COOH-(L)Trp-Co (A-C), HCP-SBA-15-(L)Trp-Co (D-F), HCP-Zeolite-(L)Trp-Co (G-I) and HCP-Wood-(L)Trp-Co (J-L).

Figure S5 SEM and EDS images of HCP-(L)Trp , HCP-(L)Trp-Co and HCP- (L)Trp-Ru.

Figure S6 XPS of HCP- (L)Trp-Co and HCP- (L)Trp-Ru.

Table S1 Different catalysts catalyze the Henry reaction^a

Table S2 Effects of solvents on catalytic properties^a

Figure S7 Henry reaction infrared spectrum

Table S3 Effect of template dosage on catalytic performance^a

Table S4 Performance test of the catalyst supports^a

Table S4 Reuse of catalysts^a

Table S5 Blank experimental results^a

Table S6 Blank experimental results^a

Table S7 Chlorine content in catalyst support

Table S8 The content of active metal in the catalyst

Figure S8 EDS images of HCP-Silica-COOH-(L)Trp (A), HCP-Silica-NH₂-(L)Trp

(B), HCP-SBA-15-(L)Trp (C), HCP-Zeolite-(L)Trp (D), HCP-PS-(L)Trp (E), HCP-Wood-(L)Trp (F) and HCP-cellulose-(L)Trp (G) (Co).

Figure S9 EDS images of HCP-Silica-NH₂-(L)Trp (A), HCP-PS-(L)Trp (B) and HCP-cellulose-(L)Trp (C) (Ru).

Figure S10 XPS of HCP-Cellulose-(L)Trp-Ru (A) and HCP-Cellulose-(L)Trp-Ru (5

cycles) (B)

Table S9 ICP-MS test data of hot filtration experiments

Table S10 ICP-MS test data of carrier

Table S11 Comparison with other heterogeneous catalysts

S2 High performance liquid chromatography of the product

S1 Experimental

S1.1 Chemicals and agents

Unless otherwise stated, all reagents were purchased from commercial sources and used without purification. All solvents used in the reactions were of analytical grade, carefully dried, and distilled before use. 4,4'-bis(chloromethyl)-1,1'-biphenyl, L-tryptophan, Dichloro(1,5-cyclooctadiene)ruthenium(II), anhydrous ferric chloride (FeCl₃), nitromethane and Dichlorobis(triphenylphosphine)cobalt(II) were purchased from Aladdin Chemical Co. Ltd. (Shanghai, China). 4-nitrobenzaldehyde, 4-bromo-2hydroxybenzaldehyde, 4-methylbenzaldehyde, 4-bromobenzaldehyde, protocatechualdehyde, benzaldehyde and vanillin were purchased from Sahn Chemical Technology Co., Ltd. Amino silica gel and carboxyl silica gel (particle size: 3-10 μ m, CAS: 112945-52-5) were purchased from Aladdin Chemical Co. Ltd. Molecular sieves (SBA-15), wood (made from fir) was purchased online. Polystyrene (Type: universality II, CAS: 9003-53-6) and zeolite (particle size < 10 μ m, CAS: 1318-02-1) were purchased from Aladdin Chemical Co. Ltd.

S 1.2 Characterization

The 1H NMR spectra (500 MHz) were recorded using a Bruker AVANCE III-500 instrument at room temperature. IR spectra were obtained with a Perkin-Elmer FTIR-100 spectrophotometer. The characteristics were recorded using scanning electron microscope (Thermoscientific ApreoS LoVac, USA, SEM). Element content was analyzed using X-ray photoelectron spectroscopy (Thermo ESCALAB 250XI, USA, XPS). The morphology of the matrix in the catalyst was characterized by highresolution transmission electron microscopy (Talos F200X G2, USA, HRTEM). The absolute configuration of products was determined by JASCO PU-2089 high performance liquid chromatograph (HPLC) system equipped with UV–vis (JASCO-UV-2070), circular dichroism (JASCO-CD-2095) detectors and a column of OD-H using a solution of hexane/2-propanol as eluent at a flow rate of 1.0 mL min⁻¹. A solution of product (1.00 mg mL⁻¹) was injected into the chromatographic system through an intelligent sampler (JASCO AS- 2055).

S 1.3 Preparation of cellulose

After vacuum for 20 min, the cut wood block (0.8 cm*0.8 cm) was placed in a round-bottom flask containing 400 mL NaClO solution (4 wt%), and then the solution pH was adjusted to 4.6 with HAc, followed by sonicated for 40 min. Delignification

was performed in an oil bath for 24 h at 100 °C (observe the color of the wood until it turns white). Subsequently, the treated wood was washed with H₂O until the pH of effluent was close to neutral, put into NaOH/H₂O solution (w/w, 8%) and extract 8 h at 80 °C. After that, solvent exchange with EtOH/H₂O solution (20/80, 40/60, 60/40, 80/20, 100/0) to remove residual NaOH and freeze-dried. The product cellulose is obtained.

Figure S1 Optical microscope image (A-C) and SEM image of cellulose (D-F)

Figure S2 FT-IR spectra of HCP-PS-(L)Trp, HCP-Silica-NH₂-(L)Trp, HCP-Silica-COOH-(L)Trp, HCP-Zeolite-(L)Trp, HCP-SBA-15-(L)Trp and HCP-Wood-(L)Trp

Figure S3 TEM images of HCP-Silica-COOH-(L)Trp (A B), HCP-SBA-15-(L)Trp (C

D), HCP-Zeolite-(L)Trp (E F) and HCP-Wood-(L)Trp (G H)

Figure S4 SEM and EDS images of HCP-Silica-COOH-(L)Trp-Co (A-C), HCP-SBA-15-(L)Trp-Co (D-F), HCP-Zeolite-(L)Trp-Co (G-I) and HCP-Wood-(L)Trp-Co (J-L)

Figure S5 SEM and EDS images of HCP-(L)Trp , HCP- (L)Trp-Co and HCP-

(L)Trp-Ru

Figure S6 XPS of HCP- (L)Trp-Co and HCP- (L)Trp-Ru

Table S1 Different catalysts catalyze the Henry reaction^a

		O_2N H H_3NO_2		H ∕∕NO₂	
Entry	Catalyst	Time (d)	solvent	Yield (%) ^b	ee (%)°
1	HCP-Trp-Ru	1	CHCl ₃	93	80
2	HCP-Trp-Ru	2	CHCl ₃	99	81
3	HCP-Trp-Ru	3	CHCl ₃	99	82

^a The reaction was performed with nitromethane (0.6 mmol), paranitroanisole (0.5 mmol), catalyst (10 mg) at 25 °C. ^b Isolated yields. ^c For R enantiomer, determined by chiral HPLC analysis (Chiralpak OD) with hexane/isopropanol (90/10, v/v) as the eluent, ee for S isomer.

Table S2 Effects of solvents on catalytic properties^a

	O ₂ N	⊖0 + CH₃NO₂ H		OH * NO ₂	
Entry	Catalyst	Time (h)	solvent	Yield (%) ^b	ee (%) ^c
1	HCP-Trp-Ru(10mg)	48	MeOH	97	82
2	HCP-Trp-Ru(10mg)	48	CHCl ₃	99	83
3	HCP-Trp-Ru(10mg)	48	Toluene	96	74
4	HCP-Trp-Ru(10mg)	48	CH_2CI_2	90	71

^a The reaction was performed with nitromethane (0.6 mmol), paranitroanisole (0.5 mmol), HCP-Trp-Ru (10 mg) at 25 [°]C. ^b Isolated yields. ^c For R enantiomer, determined by chiral HPLC analysis (Chiralpak OD) with hexane/isopropanol (90/10, v/v) as the eluent, ee for S isomer.

Figure S7 Henry reaction infrared spectrum

		H + CH ₃ M			
Entry	Reactant 1	product	Catalyst ^b	Yield (%) [°]	ee (%) ^d
1			HCP-PS(00%)-(L)Trp-Co	99	81
2		011	HCP-PS(10%)-(L)Trp-Co	97	70
3	–<>−		HCP-PS(20%)-(L)Trp-Co	99	75
4	п		HCP-PS(25%)-(L)Trp-Co	97	84
5			HCP-PS(30%)-(L)Trp-Co	99	77

^a The reaction was performed with nitromethane (0.6 mmol), p-Tolualdehyde (0.5 mmol), Catalyst (10 mg) and CHCl₃(0.6 mL) at 25 °C. Reaction time was 48 hours. ^b Matrix content wt% = (Matrix / (Matrix + chiral ligand)) x100 wt% ° Isolated yields. ^d For enantiomer, determined by chiral HPLC analysis (Chiralpak OD) with hexane/isopropanol (90/10, v/v) as the eluent, ee for S isomer.

Table S4 Performance test of the catalyst supports^a

(a)The reaction was performed with nitromethane (0.6 mmol), Reactant 1 (0.5 mmol), Catalyst (10 mg) and CHCl₃ (0.6 mL) at 25 °C. Reaction time was 48 hours. (b) For enantiomer, determined by chiral HPLC analysis (Chiralpak OD) with hexane/isopropanol (90/10, v/v) as the eluent, ee for S isomer. Note: the horizontal line indicated that the catalyst has no catalytic effect under current conditions.

Table S5 Reuse of catalysts^a

	O H ₊ CH ₃ NO ₂ —	Cat. OH	
Entry	Catalyst	Yield (%) ^b	<i>ee</i> (%) ^c
1	HCP-Cellulose-(L)Trp-Ru	97	95
2	Recycle2	95	94
3	Recycle3	94	95
4	Recycle4	96	93
5	Recycle5	92	88
6	Recycle6	80	89
7	Recycle7	75	90
8	Recycle8	60	88
9	Recycle9	64	87
10	Recycle10	50	86

^a The reaction was performed with nitromethane (0.6 mmol), p-Tolualdehyde (0.5 mmol), Catalyst (10 mg) and CHCl₃(0.6 mL) at 25 °C. Reaction time was 48 hours. ^b Isolated yields. ^c For R enantiomer, determined by chiral HPLC analysis (Chiralpak OD) with hexane/isopropanol (90/10, v/v) as the eluent, ee for S isomer.

Table S6 Blank experimental results^a

Entry	Catalyst	Yield (%) ^b	<i>ee</i> (%)°
1	HCP-Silica-NH ₂ -(L)Trp	5	82
2	HCP-PS-(L)Trp	-	-
3	HCP-Cellulose-(L)Trp	-	-

^a The reaction was performed with nitromethane (0.6 mmol), p-Tolualdehyde (0.5 mmol), Catalyst (10 mg) and CHCl₃(0.6 mL) at 25 °C. Reaction time was 48 hours. ^b Isolated yields. ^c For R enantiomer, determined by chiral HPLC analysis (Chiralpak OD) with hexane/isopropanol (90/10, v/v) as the eluent, ee for S isomer.

(A) HCP-Silica-COOH-(L)Tr 2 μm	p Co	(B) F 2 μm	4CP-Silica-NH₂-(L)Trp	Co	(C) 2 μm	HCP-SBA-15-(L)Trp	Co
(D) HCP-Zeolite-(L)Trp 2 μm	Со	(Ε) 2 μm	HCP-PS-(L)Trp	Co	(F) 2 μm	HCP-Wood-(L)Trp	Со
(G) HCP-Cellulose-(L)Trp	Со						

Figure S8 EDS images of HCP-Silica-COOH-(L)Trp (A), HCP-Silica-NH2-(L)Trp

(B), HCP-SBA-15-(L)Trp (C), HCP-Zeolite-(L)Trp (D), HCP-PS-(L)Trp (E), HCP-

Wood-(L)Trp (F) and HCP-cellulose-(L)Trp (G) (Co).

(A)	HCP-Silica-NH ₂ -(L)Trp	Ru	(B)	HCP-PS-(L)Trp	Ru	(C) HO	CP-Cellulose-(L)Trp	Ru
10µn	n sa		10µm			10µm		

Figure S9 EDS images of HCP-Silica-NH₂-(L)Trp (A), HCP-PS-(L)Trp (B) and

HCP-cellulose-(L)Trp (C) (Ru).

Entry	Catalyst support	Cl2p (%)
1	HCP-(L)Trp	0.40
2	HCP-Cellulose-(L)Trp	0.67
3	HCP-Silica-COOH-(L)Trp	0.46
4	HCP-Silica-NH ₂ -(L)Trp	0.43
5	HCP-SBA-15-(L)Trp	0.47
6	HCP-Zeolite Powder-(L)Trp	0.49
7	HCP-PS-(L)Trp	0.78
8	HCP-Wood-(L)Trp	0.68

Table S7 Chlorine content in catalyst support

Determined by X-ray photoelectron spectroscopy analysis.

Table S8 The content of active metal in the catalyst

Entry	Catalyat	metallic	element	metallic	element	mass percent
Enuy	Catalyst	concentration (r	ng/L)ª	mass (mg	1) _P	(%)°
1	HCP-(L)Trp-Ru	5.1020		0.051020		5.1020
2	HCP-Cellulose-(L)Trp-Ru	5.1269		0.051269		5.1269
3	HCP-Cellulose-(L)Trp-Ru (Recycle5)	5.1239		0.051239		5.1239
4	HCP-(L)Trp-Co	0.3434		0.003434		0.3434
5	HCP-Silica-COOH-(L)Trp-Co	0.3635		0.003635		0.3635
6	HCP-Silica-NH ₂ -(L)Trp-Co	0.3433		0.003433		0.3433
7	HCP-SBA-15-(L)Trp-Co	0.3420		0.003420		0.3420
8	HCP-Zeolite Powder-(L)Trp-Co	0.3496		0.003496		0.3496
9	HCP-PS-(L)Trp-Co	0.3458		0.003458		0.3458
10	HCP-Wood-(L)Trp-Co	0.3485		0.003485		0.3485
11	HCP- Cellulose -(L)Trp-Co	0.3495		0.003495		0.3495

Test condition: ^a 1mg of sample was weighed and dissolved in concentrated nitric acid with assistance of ultrasound. After complete dissolution, the solution was diluted to 10mL with deionized water. The concentration of metal ions in the solution was determined by ICP-AES.

^b metallic element mass in the samples = metallic element concentration x volume of solution.

^c mass percent of metallic element in the materials = (metallic element mass / weight) x100%

Figure S10 XPS of HCP-Cellulose-(L)Trp-Ru (A) and HCP-Cellulose-(L)Trp-Ru (5

cycles) (B)

Table S9 ICP-MS test data of hot filtration experiments

Entry	Catalyst	metallic	element	metallic	element	dissolution
Enuy	Caldiysi	concentration	(µg/L)ª	mass (µg) ^b	rate ^c
1	HCP-(L)Trp-Ru	2.112		0.02112		0.04%
2	HCP-Cellulose-(L)Trp-Ru	1.421		0.01421		0.03%
3	HCP-(L)Trp-Co	0.612		0.00612		0.18%
4	HCP-Silica-COOH-(L)Trp-Co	0.414		0.00414		0.11%
5	HCP-Silica-NH ₂ -(L)Trp-Co	0.571		0.00517		0.15%
6	HCP-SBA-15-(L)Trp-Co	0.609		0.00609		0.18%
7	HCP-Zeolite Powder-(L)Trp-Co	0.626		0.00626		0.18%
8	HCP-PS-(L)Trp-Co	0.410		0.00410		0.12%
9	HCP-Wood-(L)Trp-Co	0.303		0.00303		0.09%
10	HCP- Cellulose -(L)Trp-Co	0.217		0.00217		0.06%

Test condition: ^a 1mg sample was stirred in deionized water (5 mL) at 50°C for 24h, then the solution was diluted to 10mL with deionized water. The concentration of metal ions in the solution was determined by ICP-MS;

^b metallic element mass in the samples = metallic element concentration x volume of solution.

° (Dissolved metal/total amount of metal) X100 wt%

Table S10 ICP-MS test data of carrier

		metallic	element	metallic	element	mass percent
Entry	Carrier	concentration	(µg /L)ª	mass (µg)⁵		(%)°
1	HCP-(L)Trp	3.910(Fe)		0.0391		0.0039
2	HCP-Cellulose-(L)Trp	5.189(Fe)		0.0519		0.0052
3	HCP-Silica-COOH-(L)Trp	4.333(Fe)		0.0433		0.0043
4	HCP-Silica-NH ₂ -(L)Trp	4.145(Fe)		0.0415		0.0041
5	HCP-SBA-15-(L)Trp	3.849(Fe)		0.0385		0.0038
6	HCP-Zeolite Powder-(L)Trp	4.043(Fe)		0.0404		0.0040
7	HCP-PS-(L)Trp	3.567(Fe)		0.0357		0.0036
8	HCP-Wood-(L)Trp	4.832(Fe)		0.0483		0.0048

Test condition: ^a 1mg of sample was weighed and dissolved in concentrated nitric acid with assistance of ultrasound. After complete dissolution, the solution was diluted to 10mL with deionization. The concentration of metal ions in the solution was determined by ICP-MS.

^b metallic element mass in the samples = metallic element concentration x volume of solution.

^c mass percent of metallic element in the materials = (metallic element mass / weight) x100%

reaction	references	catalysts	repo	rted	this	
			ee	and	experi	men
			yield			
Henry	37 Chiral Ni-	Ni²+-L1@NaY	ee	46-	ee 90-	.99%
reaction	Schiff Base	(heterogeneous)	83%		yield	90
	Complexes		yield	54-	99%	
	inside Zeolite-Y		92%			
	and Their					
	Application in					
	Asymmetric					
	Henry Reaction:					
	Effect of Initial					
	Activation with					
	Microwave					
	Irradiation					
	38 Chiral	Cu-Y-1a ((1S,2S)-N1,N2-Bis(3-chlorobenzyl)cyclohexane-	ee	57-		
	enhancement in	1,2-diamine 1a)	94%			
	the confined	(heterogeneous)	yield	57-		
	space of		97%			
	zeolites for the					
	asymmetric					
	synthesis of b-					
	hydroxy					
	nitroalkanes					
	39 Chiral	Cu ²⁺ -Y-CD	ee	30-		
	enhancement in	(heterogeneous)	88%			
	the confined		yield	48-		
	space of		94%			
	zeolites for the					
	asymmetric					
	synthesis of b-					
	hydroxy					
	nitroalkanes					

Table S11 Comparison with other heterogeneous catalysts

S2 High performance liquid chromatography of the product

Table S2, Entry 4 (S). The product is yellow liquid. HCP-Trp-Ru is the catalyst. Reaction time 30 min, enantiomeric excess: 81%; Chiral HPLC analysis: Daicel Chiralpak OD-H, hexane/iso-propanol =90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: tR₁ (major) =4.525 min, tR₂ =6.650 min. ¹H NMR (500 MHz, CDCl₃, δ): 4.76-5.03 (m, 2H, CH₂), 4.90 (m, 1H, CH), 7.59 (m, 2H, Ar-H), 8.19 (m, 2H, Ar-H).

area%

1	4.525	90.534
2	6.650	9.466

Table 2, 3b (S). The product is yellow liquid. HCP-Trp-Co is the $Br \rightarrow H_{NO_2}^{OH}$ catalyst. Reaction time 15 min, enantiomeric excess: 95%; Chiral HPLC analysis: Daicel Chiralpak OD-H, hexane/iso-propanol =90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: tR₁ (major) =6.567 min, tR₂ =9.217 min. ¹H NMR (500 MHz, CDCl₃, δ): 4.67-5.14 (m, 2H, CH₂), 4.91 (m, 1H, CH), 6.99-7.42 (m, 3H, Ar-H).

Table S4, 3c (S). The product is yellow liquid. HCP-Zeolite-(L)Trp-HO-(-) (-) (-) (-) (-) (-) Co is the catalyst. Reaction time 15 min, enantiomeric excess: 97%; Chiral HPLC analysis: Daicel Chiralpak OD-H, hexane/iso-propanol =90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: tR₁ (major) =6.525 min, tR₂ =8.392 min. ¹H NMR (500 MHz, CDCl₃, δ): 4.77-5.18 (m, 2H, CH₂), 4.95 (m, H, CH), 6.38-

OH Table 2, 3d (S). The product is yellow liquid. HCP-Cellulose-(L)Trp-Co is the catalyst. Reaction time 15 min, enantiomeric excess: 87%;

Chiral HPLC analysis: Daicel Chiralpak OD-H, hexane/iso-propanol =90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: tR₁ (major) =5.242 min, tR₂ =7.130 min. ¹H NMR (500 MHz, CDCl₃, δ): 4.61-4.95 (m, 2H, CH₂), 4.90 (s, 1H, CH), 7.20-7.55 (m, 5H, Ar-H).

Table 2, 3e (S). The product is yellow liquid. HCP-(L)Trp-Co is the catalyst. Reaction time 20 min, enantiomeric excess: 81%; Chiral

HPLC analysis: Daicel Chiralpak OD-H, hexane/iso-propanol =90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: tR₁ (major) =4.958 min, tR₂ =6.525 min. ¹H NMR (500 MHz, CDCl₃, δ): 2.33 (m, 3H, CH₃), 4.77-5.02 (m, 2H, CH₂), 4.90 (m, H, CH), 7.22 (m, 2H, Ar-H), 7.47 (m, 2H, Ar-H).

1

0

d

6 5 4 3 2 Chemical shift (ppm)

8

7

Table 2, 3g (S). The product is yellow liquid. HCP-PS-(L)Trp-Co is the catalyst. Reaction time 30 min, enantiomeric excess: 93%; Chiral HPLC analysis: Daicel Chiralpak OD-H, hexane/iso-propanol =90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: tR₁ (major) =6.433 min, tR₂ =12.942 min. ¹H NMR (500 MHz, CDCl₃, δ): 3.93(m, 3H, CH₃), 4.77-5.08 (m, 2H, CH₂), 4.95 (m, H, CH), 6.71-6.88 (m, 3H, Ar-H).

