Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

## An Exchange Interaction of the Antiferromagnetic Nature in Benzoato Bridged Mn(II) Chains

Romana Mičová<sup>a</sup>, Cyril Rajnák<sup>a\*</sup>, Ján Titiš<sup>a</sup>, Ján Moncol<sup>\*</sup>b, Ľubor Dlháň<sup>b</sup>, Michal Zalibera<sup>c</sup> and Roman Boča<sup>a</sup>

 <sup>a</sup> Department of Chemistry, Faculty of Natural Sciences, University of SS Cyril and Methodius, 917 01 Trnava, Slovakia, <u>cyril.rajnak@ucm.sk</u>
<sup>b</sup> Institute of Inorganic Chemistry, Slovak University of Technology, 812 37 Bratislava, Slovakia
<sup>c</sup> Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, SK-812 37 Bratislava, Slovakia

Supplementary information (SI)



Fig. S1. FT-IR (ATR) spectrum of 1.



Fig. S2. FT-IR (ATR) spectrum of 2.



Fig. S3. The FTIR-ATR spectrum cutout of **1** and **2**.



Figure S4. Electronic specra of 1-2.



Figure S5. Calculated powder diffraction pattern for 1 from cif.file (red), and recorded pattern at Cu,  $\lambda = 1.54060$  Å (black).



Figure S6. Calculated powder diffraction pattern for **2** from cif.file (red), and recorded pattern at Cu,  $\lambda = 1.54060$  Å (black).



Figure S7. X-band (9.5 GHz) EPR spectra of a) **1** and b) **2** in frozen methanol glass at 77 K (black lines). The spectral simulations (red lines) were calculated using spin Hamiltonian  $\hat{H} / hc = g\mu_{\rm B}B\hat{S}_z + D[\hat{S}_z + S(S+1)/3] + E(\hat{S}_x^2 - \hat{S}_x^2) + A\hat{S}_z\hat{I}_z$ 

with paramaters:

- a) g = 2.004,  $A({}^{55}\text{Mn}) = 90 \times 10^{-4} \text{ cm}^{-1}$ ,  $|D| = 185 \times 10^{-4} \text{ cm}^{-1}$ ,  $|E| = 50 \times 10^{-4} \text{ cm}^{-1}$ . Line broadening model assumed a broad Gaussian distribution of ZFS parameters [1] with full width at half maximum (FWHM)  $D_{\text{FWHM}} = 180 \times 10^{-4} \text{ cm}^{-1}$ ,  $E_{\text{FWHM}} = 40 \times 10^{-4} \text{ cm}^{-1}$ . \* mark simulation artifacts due to the trimmed spectral range
- b) g = 2.001,  $A(^{55}\text{Mn}) = 90 \times 10^{-4} \text{ cm}^{-1}$ ,  $|D| = 202 \times 10^{-4} \text{ cm}^{-1}$ ,  $|E| = 50 \times 10^{-4} \text{ cm}^{-1}$ . Line broadening model assumed a broad Gaussian distribution of ZFS parameters  $D_{\text{FWHM}} = 140 \times 10^{-4} \text{ cm}^{-1}$ ,  $E_{\text{FWHM}} = 38 \times 10^{-4} \text{ cm}^{-1}$

| Complex                             | CCDC    | Chromophore  | SHAPE | E agreemei | Preferred | Ref   |       |      |     |
|-------------------------------------|---------|--------------|-------|------------|-----------|-------|-------|------|-----|
|                                     | No      |              |       |            | geometry  |       |       |      |     |
|                                     |         |              | 5bpy  | HP         | HPY       | C0C   | CTPR  |      |     |
| $[Mn^{II}(L^1)(L^2)_4]_n$           | 1992055 | $\{MnO_6N\}$ | 0.805 | 33.582     | 24.222    | 5.630 | 4.305 | 5bpy | tw  |
| $[Mn^{II}(L^1)(L^3)_4]_n$           | 1992057 | $\{MnO_6N\}$ | 1.157 | 34.674     | 24.331    | 4.780 | 3.376 | 5bpy | tw  |
| [Mn <sup>II</sup> HL ·(AcO)·        | 634809  | $\{MnO_6N\}$ | 0.788 | 32.623     | 24.076    | 7.383 | 5.834 | 5bpy | [2] |
| 2 C <sub>2</sub> H <sub>5</sub> OH] |         |              |       |            |           |       |       |      |     |
| $[Mn^{II}(H_2L)]$                   | 1548163 | $\{MnO_6N\}$ | 2.480 | 30.177     | 22.383    | 4.230 | 3.183 | 5bpy | [3] |
| $(NO_3)_2(CH_3OH$                   |         |              |       |            |           |       |       |      |     |
| )]·CH <sub>3</sub> OH               |         |              |       |            |           |       |       |      |     |

Table S1. Structural features of 1D polymeric chains with  $\{MnO_6N_1\}$  chromophore.

<sup>a</sup> Program SHAPE [4]; HL = (Z)-2-hydroxy-N'-(2-oxoindolin-3-ylidene)benzohydrazide; H<sub>2</sub>L = (E)-3-hydroxy-N'-(1-(2-oxo-2H-chromen-3-yl)ethylidene)-2-naphthohydrazide; HP = Heptagon, HPY = Hexagonal pyramid, C0C = Capped octahedron, CTPR = Capped trigonal prism

Table S2. Selected bond lengths (Å) in complexes 1–2.

| 1                     |                       |                        |                            |                      |                    |             |
|-----------------------|-----------------------|------------------------|----------------------------|----------------------|--------------------|-------------|
| Mn1–O1                | 2.314(1)              | Mn1–O2                 | 2.194(1)                   | Mn1–O3 <sup>iv</sup> | 2.310(1)           |             |
| Mn1–O1 <sup>iii</sup> | 2.314(1)              | Mn1–O2 <sup>iii</sup>  | 2.194(1)                   | Mn1–O3 <sup>v</sup>  | 2.310(1)           |             |
| Mn1–N1                | 2.279(2)              |                        |                            |                      |                    |             |
| 2                     |                       |                        |                            |                      |                    |             |
| Mn1–O1                | 2.308(2)              | Mn1–O2                 | 2.298(2)                   | Mn1–O3               | 2.153(2)           |             |
| Mn1–O4 <sup>i</sup>   | 2.318(2)              | Mn1–O9                 | 2.154(2)                   | Mn1-O10vi            | 2.312(2)           |             |
| Mn1–N1                | 2.305(2)              |                        |                            |                      |                    |             |
| Symmetry coo          | de: (i) $1-x$ , $1-y$ | y, 1-z; (iii) $1-x, y$ | $\frac{1}{2-z}$ ; (iv) 1-z | x, -y, 1-z; (v) x, - | -y, -1/2 - z; (vi) | <i>-x</i> . |

1-y, 1-z.

Table S3. Selected bond angles (°) in chromophore of 1-2.

| 1                                     | (°)    | · •                                   | (°)    |
|---------------------------------------|--------|---------------------------------------|--------|
| 01-Mn1-O1 <sup>1</sup>                | 141.18 | O2-Mn1-N1                             | 88.89  |
| O2 <sup>1</sup> -Mn1-O1               | 96.77  | O2 <sup>1</sup> -Mn1-N1               | 88.89  |
| O2-Mn1-O1 <sup>1</sup>                | 96.77  | O3 <sup>3</sup> -Mn1-O1 <sup>1</sup>  | 143.48 |
| O2 <sup>1</sup> -Mn1-O1 <sup>1</sup>  | 82.49  | O3 <sup>3</sup> -Mn1-O1               | 74.27  |
| O2-Mn1-O1                             | 82.49  | O3 <sup>2</sup> -Mn1-O1 <sup>1</sup>  | 74.27  |
| O2-Mn1-O2 <sup>1</sup>                | 177.79 | O3 <sup>2</sup> -Mn1-O3 <sup>3</sup>  | 143.51 |
| O2 <sup>1</sup> -Mn1-O3 <sup>2</sup>  | 96.97  | N1-Mn1-O1                             | 70.59  |
| O2 <sup>1</sup> -Mn1-O3 <sup>3</sup>  | 84.81  | N1-Mn1-O1 <sup>1</sup>                | 70.59  |
| O2-Mn1-O3 <sup>2</sup>                | 84.81  | N1-Mn1-O3 <sup>3</sup>                | 143.25 |
| O2-Mn1-O3 <sup>3</sup>                | 96.98  | N1-Mn1-O3 <sup>2</sup>                | 143.25 |
| 2                                     |        |                                       |        |
| O1-Mn1-O4 <sup>1</sup>                | 141.21 | O3-Mn1-O10 <sup>2</sup>               | 82.26  |
| O2 <sup>1</sup> -Mn1-O10 <sup>2</sup> | 76.87  | O3-Mn1-N1                             | 87.96  |
| O2-Mn1-O1                             | 140.53 | O9-Mn1-O1                             | 84.73  |
| O21-Mn1-O41                           | 76.75  | O9-Mn1-O2                             | 93.39  |
| O2-Mn1-O10 <sup>2</sup>               | 141.34 | O9-Mn1-O4 <sup>1</sup>                | 82.05  |
| O2-Mn1-N1                             | 70.52  | O9-Mn1-O10 <sup>2</sup>               | 101.45 |
| O3-Mn1-O1                             | 95.15  | O9-Mn1-N1                             | 88.39  |
| O3-Mn1-O2                             | 84.24  | O10 <sup>2</sup> -Mn1-O4 <sup>1</sup> | 70.36  |
| O3-Mn1-O41                            | 100.31 | N1-Mn1-O1                             | 70.03  |
| O3-Mn1-O9                             | 176.15 | N1-Mn1-O4 <sup>1</sup>                | 145.23 |
|                                       |        | N1-Mn1-O10 <sup>2</sup>               | 144.41 |



Figure S8. The charge population for anionic ligands calculated at the HF-MP2/6-31G\* level of theory (for  $L^2$  and  $L^3$ , the partial charges on the oxygen atoms of the carboxyl group are practically the same).

|                                  | $Mn-L(r_{ij})$ | $R_0(II)$ | $R_0(III)$ | $R_0(IV)$ | $s_{ij}(II)$ | $S_{ij}(III)$ | $s_{ij}(IV)$ |
|----------------------------------|----------------|-----------|------------|-----------|--------------|---------------|--------------|
| Mn1–O1                           | 2.314          | 1.765     | 1.732      | 1.750     | 0.227        | 0.207         | 0.218        |
| Mn1–O1 <sup>iii</sup>            | 2.314          | 1.765     | 1.732      | 1.750     | 0.227        | 0.207         | 0.218        |
| Mn1–O2                           | 2.194          | 1.765     | 1.732      | 1.750     | 0.314        | 0.287         | 0.301        |
| Mn1–O2 <sup>iii</sup>            | 2.194          | 1.765     | 1.732      | 1.750     | 0.314        | 0.287         | 0.301        |
| Mn1–O3 <sup>iv</sup>             | 2.310          | 1.765     | 1.732      | 1.750     | 0.229        | 0.210         | 0.220        |
| Mn1–O3 <sup>v</sup>              | 2.310          | 1.765     | 1.732      | 1.750     | 0.229        | 0.210         | 0.220        |
| Mn1–N1                           | 2.279          | 1.849     | 1.837      | 1.822     | 0.313        | 0.303         | 0.291        |
| $V(Mn) = \sum s_{ij}$            |                |           |            |           | 1.852        | 1.711         | 1.769        |
| $\left[ \left( n\right) \right]$ | $\lambda = 27$ | р · ·     | 1 .        | r = 1     |              |               |              |

Table S4. Bond valence sum analysis for complex 1.

 $s_{ij} = \exp\left[\left(R_0 - r_{ij}\right)/0.37\right], R_0$  - empirical parameter [5].

Table S5. Bond valence sum analysis for complex 2.

|                       | $Mn-L(r_{ij})$ | $R_0(\mathrm{II})$ | $R_0(\text{III})$ | $R_0(IV)$ | $s_{ij}(II)$ | $s_{ij}(III)$ | $s_{ij}(IV)$ |
|-----------------------|----------------|--------------------|-------------------|-----------|--------------|---------------|--------------|
| Mn1–O1                | 2.308          | 1.765              | 1.732             | 1.750     | 0.230        | 0.211         | 0.221        |
| Mn1–O2                | 2.298          | 1.765              | 1.732             | 1.750     | 0.237        | 0.217         | 0.227        |
| Mn1–O3                | 2.153          | 1.765              | 1.732             | 1.750     | 0.350        | 0.321         | 0.336        |
| Mn1–O4 <sup>i</sup>   | 2.318          | 1.765              | 1.732             | 1.750     | 0.224        | 0.205         | 0.215        |
| Mn1–O9                | 2.154          | 1.765              | 1.732             | 1.750     | 0.349        | 0.320         | 0.336        |
| Mn1–O10 <sup>vi</sup> | 2.312          | 1.765              | 1.732             | 1.750     | 0.228        | 0.209         | 0.219        |
| Mn1–N1                | 2.305          | 1.849              | 1.837             | 1.822     | 0.292        | 0.282         | 0.271        |
| $V(Mn) = \sum s_{ij}$ |                |                    |                   |           | 1.911        | 1.764         | 1.826        |

 $s_{ij} = \exp\left[\left(R_0 - r_{ij}\right)/0.37\right], R_0$  - empirical parameter [5].

LOBA for mononuclear complex unit of 1

| Oxidation | state | of | atom  | 1(Mn)    | : | 2        |         |            |     |        |           |
|-----------|-------|----|-------|----------|---|----------|---------|------------|-----|--------|-----------|
| Oxidation | state | of | atom  | 2(0)     | : | -2       |         |            |     |        |           |
| Oxidation | state | of | atom  | 3(H)     | : | 1        |         |            |     |        |           |
| Oxidation | state | of | atom  | 4(N)     | • | - 3      |         |            |     |        |           |
| Oxidation | state | of | atom  | 5(C)     | : | 0        |         |            |     |        |           |
| Oxidation | state | of | atom  | 6(H)     | • | 1        |         |            |     |        |           |
| Oxidation | state | of | atom  | 7(H)     | : | 1        |         |            |     |        |           |
| Ovidation | state | of | atom  | 8(C)     | : | 1        |         |            |     |        |           |
| Ovidation | state | of | atom  |          | : | 2        |         |            |     |        |           |
| Ovidation | state | of | atom  | 10(H)    | : | 1        |         |            |     |        |           |
| Ovidation | state | of | atom  | 11(C)    | : | 2        |         |            |     |        |           |
| Ovidation | state | of | atom  | 12(H)    | : | 1        |         |            |     |        |           |
| Ovidation | state | of | atom  | 13(0)    | : | _2       |         |            |     |        |           |
| Ovidation | state | of | atom  | 14(H)    | : | -2       |         |            |     |        |           |
| Ovidation | state | of | atom  | 15(0)    | : | <u>0</u> |         |            |     |        |           |
| Oxidation | state | of | atom  | 16(U)    | : | 1        |         |            |     |        |           |
| Oxidation | state | of | atom  | 17(U)    | : | 1        |         |            |     |        |           |
| Oxidation | state | of | atom  | 10(C)    | : | 1        |         |            |     |        |           |
| Oxidation | state | 01 | atom  | 10(C)    | : | 4        |         |            |     |        |           |
| Oxidation | state | 0T | atom  | 19(U)    | • | 1        |         |            |     |        |           |
| Oxidation | state | 0T | atom  | 20(П)    | • | 1        |         |            |     |        |           |
| Oxidation | state | 0T | atom  | 21(C)    | • | 4        |         |            |     |        |           |
| Oxidation | state | 01 | atom  | 22(C)    | • | 4        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 23(C)    | : | 2        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 24(H)    | : | T        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 25(C)    | : | 4        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 26(C)    | : | 2        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 2/(H)    | : | T        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 28(C)    | : | 4        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 29(C)    | : | 2        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 30(H)    | : | 1        |         |            |     |        |           |
| Oxidation | state | 0† | atom  | 31(N)    | : | 3        |         |            |     |        |           |
| Oxidation | state | ot | atom  | 32(N)    | : | 3        |         |            |     |        |           |
| Oxidation | state | ot | atom  | 33(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 34(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 35(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 36(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 37(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 38(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 39(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | 0Ť | atom  | 40(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 41(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | ot | atom  | 42(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | ot | atom  | 43(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 44(0)    | : | -2       |         |            |     |        |           |
| Oxidation | state | OT | atom  | 45(N)    | : | 3        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 46(N)    | : | 3        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 4/(C)    | : | 4        |         |            |     |        |           |
| Oxidation | state | OT | atom  | 48(C)    | : | 4        |         |            |     |        |           |
| Oxidation | state | ot | atom  | 49(C)    | : | 2        |         |            |     |        |           |
| Oxidation | state | ot | atom  | 50(H)    | : | 1        |         |            |     |        |           |
| Oxidation | state | ot | atom  | 51(C)    | : | 4        |         |            |     |        |           |
| UX10ation | state | 0† | atom  | 52(C)    | : | 2        |         |            |     |        |           |
| UXIDATION | state | 0† | atom  | 53(H)    | : | 1        |         |            |     |        |           |
| UXIDATION | state | 0† | atom  | 54(C)    | : | 4        |         |            |     |        |           |
| Uxidation | state | 0† | atom  | 55(C)    | : | 2        |         |            |     |        |           |
| UXIDATION | state | 01 | atom  | 56(H)    | : | 1        |         |            |     |        |           |
| UX10ation | state | 0† | atom  | 5/(0)    | : | - 2      |         |            |     |        |           |
| Oxidation | state | UT | atom  | 58(U)    | : | -2       |         |            |     |        |           |
| Oxidation | state | 01 | atom  | 59(H)    | : | 1        |         |            |     |        |           |
| UX10ation | state | 0† | atom  | 00(H)    | : | 1        |         |            |     |        |           |
| Oxidation | state | UT | atom  | οT(H )   | : | 1        |         |            |     |        |           |
| Oxidation | state | 01 |       | 02(H)    | : | 1        | <b></b> | <u>م</u> د | + - | ligend | framest   |
| OXIUATION | state | υτ | cne . | rragment | • | -2       | - sum   | υτ         | une | ттваца | Tragments |

Rereferences for SI

- R. C. Hadley, D. M. Gagnon, A. Ozarowski, R. D. Britt, E. M. Nolan. *Inorg. Chem.* 2019, 58, 13578–13590.
- [2] X. Zhong, H.-L- Wei, W.-S. Liu, D.-Q. Wang, X. Wang. *Bioorg. Med. Chem. Lett.*, 2007, 17, 3774.
- [3] R. Bikas, H.-F. Bonab, N. Noshiranzadeh, M. Aygun, M. Emami, T. Lis. J. Coord. Chem, 2018, 71, 1127.
- [4] M. Llunell, D. Casanova, J. Cirera, P. Alemany, S. Alvarez. Program SHAPE, Ver. 2.1. University of Barcelona. Note: the program assumes a spherical distribution of the ligands in ideal reference polygons or polyhedra, 2013.
- [5] Brown, I. D.; Altermatt, D. Bond-Valence Parameters Obtained from a Systematic Analysis of the Inorganic Crystal Structure Database. *Acta Crystallogr. B.* 1985, B41, 244.