Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Formal [4+1] Cyclization of (Thio/Imido)Hydrazides and Ethyl 3,3,3-

Trifluoropropanoate: Unified Synthesis of 1,3,4-Oxadiazoles, 1,3,4-Thiadiazoles

and 1,2,4-Triazoles

Lan Zhao,^{a,b} Jun Xu, ^c Jun Ma, ^{a,b} Guangwei Yin,^{a,b} Fangyi Li,^{*a,b} Tongchuan Suo,^{*a,b} and Chunhua Wang ^{*d}

^aCollege of Pharmaceutical Engineering of Traditional Chinese Medicine, State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P. R. China

^bHaihe Laboratory of Modern Chinese Medicine, Tianjin 301617, P. R. China

^cSchool of Pharmaceutical Science & Technology, Tianjin University, Tianjin 300072, P. R. China ^dSchool of Medicine, Foshan University, Foshan 528225, P. R. China

E-mail: lifangyi@tjutcm.edu.cn, suotc@tjutcm.edu.cn, pharmwch@126.com

List of Contents

1. General Information					S2
2. Experimental Procedure					
3. NMR Spectra					
4. X-ray structure of 2a (CCDC 2170479)					S65
5. X-ray structure of 4d (CCDC 2178538)					
6. X-ray	structure	of	6f	(CCDC	2178536)

S67

1. General Information

All the reactions were carried out using oven-dried glassware. All the substrates and solvents for the synthesis of compounds were purchased from commercial source (Aladdin, Alfa, Macklin) and used as received without any further purification. All the hydrazides,¹ thiohydrazides² and imidohydrazides³ were synthesized using earlier reported methods. Thin layer chromatography was performed on plates (GF254) supplied by Yantai Chemicals (China) and visualization was accomplished using UV-light, iodine stains or potassium permanganate solution. Silica gel (200-300 mesh) supplied by Tsingdao Haiyang Chemicals (China) was used for column chromatography purification with a hexane-ethyl acetate mixture as eluent. All ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃ or DMSO-d₆ at RT on Bruker spectrometers (400 MHz, 500 MHz, 600 MHz). Chemical shifts were reported in parts per million (ppm), and the residual solvent peak was used as an internal reference: proton (CDCl₃: δ 7.26, DMSO- d_6 : δ 2.50), carbon (CDCl₃: δ 77.16, DMSO- d_6 : δ 39.52) or tetramethylsilane (TMS δ 0.00) was used as a reference. Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), dtd (doublet of triplet of doublets), ddq (doublet of doublets of quartets), sext (sextet), brs (broad singlet). Coupling constants were reported in Hertz (Hz). Highresolution mass spectra (HRMS) were recorded by ESI-HRMS on a Q-TOF (time-of-flight) mass spectrometer.

2. Experimental Procedure

(A) General Procedure for the Synthesis of 1,3,4-oxadiazoles.

To a 15 mL sealed tube was added 1 (0.50 mmol), Ethyl 3, 3, 3-trifluoropropionate (0.55 mmol), Na₂CO₃ (0.75 mmol) and EtOH (5 mL). The resulting mixture was heated at 80 °C for the indicated time until the complete consumption of starting material as monitored by TLC or GC-MS analysis. After cooling, the reaction was diluted with EA and the organic phase was washed successively with water (3×25 mL) and brine (3×25 mL), dried over anhydrous Na₂SO₄, and filtered. The filtrate was concentrated in vacuo and the crude residue was purified by silica gel column chromatography (EA/Hexane) to afford desired product.

Ethyl 2-(5-phenyl-1,3,4-oxadiazol-2-yl)acetate (2a). 110 mg, 95% yield; white solid; $R_f = 0.36$ (EA-Hexane = 1:4, *V:V*); m.p. 70-72 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08–8.00 (m, 2H), 7.59–7.45 (m, 3H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.03 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.4, 165.8, 160.4, 132.0, 129.2, 127.1, 123.8, 62.3, 32.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for $C_{12}H_{12}N_2NaO_3$ [M+Na]⁺: 255.0740, found: 255.0732.

Ethyl 2-(5-(p-tolyl)-1,3,4-oxadiazol-2-yl)acetate (2b). 106 mg, 86% yield; white solid; $R_f = 0.32$ (EA-Hexane = 1:3, *V:V*); m.p. 46-48 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 7.8 Hz, 2H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.02 (s, 2H), 2.42 (s, 3H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.5, 165.9, 160.2, 142.5, 129.9, 127.0, 121.0, 62.2, 32.2, 21.7, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₄N₂NaO₃ [M+Na]⁺: 269.0897 , found: 269.0890.

Ethyl 2-(5-(4-fluorophenyl)-1,3,4-thiadiazol-2-yl) acetate (2c). 114 mg, 91% yield; white solid; $R_f = 0.39$ (EA-Hexane = 1:3, *V:V*); m.p. 86-88 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.08–8.00 (m, 2H), 7.22–7.14 (m, 2H), 4.24 (q, J = 7.1 Hz, 2H), 4.02 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 166.4, 164.9 (d, J = 253.0 Hz), 164.9, 160.4, 129.4 (d, J = 9.0 Hz), 120.1 (d, J = 3.2 Hz), 116.5 (d, J = 22.3 Hz), 62.3, 32.1, 14.2; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ -106.70; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₁FN₂NaO₃ [M+Na]⁺: 273.0646 , found: 273.0650.

Ethyl 2-(5-(4-bromophenyl)-1,3,4-thiadiazol-2-yl)acetate (2d). 135 mg, 87% yield; white solid; $R_f = 0.24$ (EA-Hexane = 1:3, *V:V*); m.p. 66-68 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.89 (d, *J* = 8.3 Hz, 2H), 7.63 (d, *J* = 8.3 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 4.01 (s, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125)

MHz, CDCl₃) δ 166.3, 165.0, 160.6, 132.5, 128.4, 126.6, 122.7, 62.3, 32.1, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₁BrN₂NaO₃ [M+Na]⁺: 332.9845, found: 332.9840.

Ethyl 2-(5-(4-(*trifluoromethyl*)*phenyl*)-1,3,4-oxadiazol-2-yl) acetate (2e). 119 mg, 79% yield; white solid; $R_f = 0.37$ (EA-Hexane = 1:3, *V:V*); m.p. 59-60 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.18 (d, *J* = 8.2 Hz, 2H), 7.77 (d, *J* = 8.2 Hz, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.06 (s, 2H), 1.29 (t, *J* = 7.1 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 166.2, 164.6, 161.1, 133.6 (q, *J* = 32.9 Hz), 127.4, 127.1 (d, *J* = 1.4 Hz), 126.3 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.6 Hz), 62.4, 32.2, 14.2; ¹⁹F {¹H} NMR (376 MHz, CDCl₃) δ - 63.16; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₁F₃N₂NaO₃ [M+Na]⁺: 323.0614 , found: 323.0610.

Ethyl 2-(5-(4-cyanophenyl)-1,3,4-oxadiazol-2-yl)acetate (2f). 89 mg, 69% yield; white solid; $R_f = 0.25$ (EA-Hexane = 1:3, *V:V*); m.p. 119-120 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.17 (d, *J* = 8.3 Hz, 2H), 7.81 (d, *J* = 8.3 Hz, 2H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.06 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.1, 164.3, 161.3, 133.0, 127.7, 127.6, 117.9, 115.5, 62.4, 32.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₁N₃NaO₃ [M+Na]⁺: 280.0693 , found: 280.0699.

Ethyl 2-(5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-yl)acetate (2g). 111 mg, 85% yield; yellowish liquid; $R_f = 0.32$ (EA-Hexane = 1:1, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 7.8, 1.8 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.09–7.00 (m, 2H), 4.22 (q, J = 7.1 Hz, 2H), 4.02 (s, 2H), 3.95 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.5, 164.4, 160.1, 158.0, 133.3, 130.6, 120.8, 113.0, 112.1, 62.1, 56.1, 32.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₄N₂NaO₄ [M+Na]⁺: 285.0846 , found: 285.0855.

Ethyl 2-(5-(3-fluorophenyl)-1,3,4-oxadiazol-2-yl)acetate (2h). 110 mg, 88% yield; white solid; $R_f = 0.41$ (EA-Hexane = 1:3, *V:V*); m.p. 73-75 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 7.8 Hz, 1H), 7.78–7.71 (m, 1H), 7.53–7.46 (m, 1H), 7.26–7.22 (m, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.03 (s, 2H), 1.30 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.3, 164.8 (d, *J* = 3.5 Hz), 163.0 (d, *J* = 247.9 Hz), 160.8, 131.1 (d, *J* = 8.1 Hz), 125.7 (d, *J* = 8.7 Hz), 122.9 (d, *J* = 3.2 Hz), 119.1 (d, *J* = 21.1 Hz), 114.2 (d, *J* = 24.5 Hz), 62.4, 32.2, 14.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -111.07; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₁FN₂NaO₃ [M+Na]⁺: 273.0646 , found: 273.0650.

Ethyl 2-(5-(benzo[d][1,3]dioxol-5-yl)-1,3,4-oxadiazol-2-yl) acetate (2i). 123 mg, 89% yield; white solid; $R_f = 0.27$ (EA-Hexane = 1:3, *V:V*); m.p. 69-71 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 8.1 Hz, 1H), 7.46 (s, 1H), 6.88 (d, *J* = 8.1 Hz, 1H), 6.03 (s, 2H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.4, 165.5, 160.0, 150.8, 148.4, 122.1, 117.6, 108.9, 107.1, 102.0, 62.2, 32.1, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₂N₂NaO₅ [M+Na]⁺: 299.0638, found: 299.0631.

Ethyl 2-(5-(naphthalen-2-yl)-1,3,4-oxadiazol-2-yl)acetate (2j). 117 mg, 83% yield; pink solid; $R_f = 0.45$ (EA-Hexane = 1:3, *V:V*); m.p. 81-83 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.54 (s, 1H), 8.12 (dd, J = 8.6, 1.5 Hz, 1H), 7.97–7.91 (m, 2H), 7.88 (d, J = 7.6 Hz, 1H), 7.61–7.52 (m, 2H), 4.27 (q, J = 7.1 Hz, 2H), 4.07 (s, 2H), 1.30 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.5, 166.0, 160.5, 134.9, 132.9, 129.2, 129.0, 128.2, 128.1, 127.6, 127.2, 123.3, 121.0, 62.3, 32.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₁₄N₂NaO₃ [M+Na]⁺: 305.0897 , found: 305.0900.

Ethyl 2-(5-(furan-2-yl)-1,3,4-oxadiazol-2-yl)acetate (2k). 104 mg, 94% yield; colorless liquid; $R_f = 0.26$ (EA-Hexane = 1:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 1.1 Hz, 1H), 7.11–7.02 (m, 1H),

6.54–6.46 (m, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.94 (s, 2H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 166.1, 159.6, 158.3, 145.7, 139.1, 114.2, 112.1, 62.0, 31.7, 13.9; HRMS (ESI-TOF) m/z calcd for C₁₀H₁₀N₂NaO₄ [M+Na]⁺: 245.0533 , found: 245.0530.

Ethyl 2-(5-(thiophen-2-yl)-1,3,4-oxadiazol-2-yl)acetate (2l). 116 mg, 97% yield; yellowish liquid; $R_f = 0.23$ (EA-Hexane = 1:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 7.71 (d, *J* = 3.6 Hz, 1H), 7.52 (d, *J* = 5.0 Hz, 1H), 7.12 (t, *J* = 4.3 Hz, 1H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.2, 161.9, 159.8, 130.4, 130.0, 128.2, 124.9, 62.2, 32.0, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₁₀H₁₀N₂NaO₃S [M+Na]⁺: 261.0304 , found: 261.0312.

Ethyl 2-(5-(1H-indol-3-yl)-1,3,4-oxadiazol-2-yl)acetate (2m). 109 mg, 80% yield; white solid; $R_f = 0.37$ (EA-Hexane = 1:1, *V:V*); m.p. 90-92 °C; ¹H NMR (600 MHz, DMSO-*d*₆) δ 12.05 (s, 1H), 8.17 (d, *J* = 2.9 Hz, 1H), 8.09 (d, *J* = 7.2 Hz, 1H), 7.57–7.50 (m, 1H), 7.25 (dtd, *J* = 17.9, 7.2, 1.2 Hz, 2H), 4.25 (s, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, DMSO-*d*₆) δ 167.3, 162.5, 158.7, 136.5, 128.2, 124.1, 123.0, 121.3, 120.2, 112.5, 99.3, 61.4, 31.4, 14.0; HRMS (ESI-TOF) *m/z* calcd for C₁₄H₁₃N₃NaO₃ [M+Na]⁺: 294.0849 , found: 594.0853.

Ethyl 2-(5-(pyridin-3-yl)-1,3,4-oxadiazol-2-yl)acetate (2n). 105 mg, 90% yield; white solid; $R_f = 0.29$ (EA-Hexane = 1:1, *V:V*); m.p. 79-81 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.25 (s, 1H), 8.76 (d, *J* = 4.2 Hz, 1H), 8.33 (d, *J* = 7.5 Hz, 1H), 7.45 (t, *J* = 7.5 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 4.05 (s, 2H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.2, 163.7, 161.0, 152.7, 148.0, 134.3, 123.9, 120.3, 62.3, 32.1, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₁H₁₁N₃NaO₃ [M+Na]⁺: 256.0693 , found: 256.0699.

Ethyl 2-(5-(pyrazin-2-yl)-1,3,4-oxadiazol-2-yl)acetate (20). 109 mg, 93% yield; yellowish liquid; $R_f = 0$. 41 (EA-Hexane = 1:1, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 9.44 (d, *J* = 1.3 Hz, 1H), 8.73 (d, *J* = 2.5 Hz, 1H), 8.72–8.70 (m, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 4.07 (s, 2H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 165.9, 163.1, 162.0, 146.8, 144.7, 144.3, 139.5, 62.4, 32.1, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₁₀H₁₀N₄NaO₃ [M+Na]⁺: 257.0645, found: 257.0650.

Ethyl 2-(5-methyl-1,3,4-oxadiazol-2-yl)acetate(**2***p*). 78 mg, 92% yield; colorless liquid; $R_f = 0.38$ (EA-Hexane = 1:2, *V:V*); ¹H NMR (600 MHz, CDCl₃) δ 4.17 (q, *J* = 7.1 Hz, 2H), 3.87 (s, 2H), 2.49 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (150 MHz, CDCl₃) δ 166.5, 164.7, 160.6, 62.1, 31.9, 14.1, 11.0; HRMS (ESI-TOF) *m/z* calcd for C₇H₁₀N₂NaO₃ [M+Na]⁺: 193.0584, found: 193.0589.

Ethyl 2-(5-propyl-1,3,4-oxadiazol-2-yl)acetate (2q). 93 mg, 94% yield; colorless liquid; $R_f = 0.32$ (EA-Hexane = 1:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 4.18 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 2H), 2.79 (t, *J* = 7.4 Hz, 2H), 1.78 (sext, *J* = 7.4 Hz, 2H), 1.23 (t, *J* = 7.1 Hz, 3H), 0.98 (t, *J* = 7.4 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 167.8, 166.4, 160.3, 61.9, 31.8, 27.1, 19.9, 14.0, 13.4; HRMS (ESI-TOF) *m/z* calcd for C₉H₁₄N₂NaO₃ [M+Na]⁺: 221.0897 , found: 221.0890.

Ethyl 2-(5-benzyl-1,3,4-oxadiazol-2-yl)acetate (2r). 106 mg, 86% yield; white solid; $R_f = 0.25$ (EA-Hexane = 1:3, *V:V*); m.p. 81-83 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.35–7.24 (m, 5H), 4.19 (s, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.88 (s, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.4, 166.3, 161.0, 133.8, 129.0, 128.8, 127.6, 62.1, 32.0, 31.8, 14.0; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₄N₂NaO₃ [M+Na]⁺: 269.0897 , found: 269.0893.

Ethyl 2-(5-(tert-butyl)-1,3,4-oxadiazol-2-yl)acetate (2s). 87 mg, 82% yield; colorless liquid; $R_f = 0.38$ (EA-Hexane = 1:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 4.20 (q, *J* = 7.1 Hz, 2H), 3.91 (s, 2H), 1.40 (s, 9H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 174.3, 166.5, 160.4, 62.0, 32.5, 32.1, 28.1, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₁₀H₁₆N₂NaO₃ [M+Na]⁺: 235.1053 , found: 235.1045.

Ethyl 2-(5-(cyanomethyl)-1,3,4-oxadiazol-2-yl)acetate (2t). 71 mg, 73% yield; white solid; $R_f = 0.24$ (EA-Hexane = 1:2, *V:V*); m.p. 84-87 °C; ¹H NMR (500 MHz, CDCl₃) δ 4.23 (q, *J* = 7.1 Hz, 2H), 4.07 (s, 2H), 3.98 (s, 2H), 1.28 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 165.9, 162.3, 158.0, 112.1, 62.5, 31.9, 16.0, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₈H₉N₃NaO₃ [M+Na]⁺: 218.0536 , found: 218.0530.

Ethyl 2-(5-ethoxy-1,3,4-oxadiazol-2-yl)acetate (2u). 85 mg, 85% yield; colorless liquid; $R_f = 0.24$ (EA-Hexane = 1:3, V:V); ¹H NMR (500 MHz, CDCl₃) δ 4.51 (q, J = 7.1 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.77 (s, 2H), 1.44 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.3, 166.2, 156.0, 69.1, 61.9, 32.2, 14.1, 14.0; HRMS (ESI-TOF) m/z calcd for C₈H₁₂N₂NaO₄ [M+Na]⁺: 223.0689, found: 223.0693.

Ethyl2-(5-(4-(N,N-dipropylsulfamoyl)phenyl)-1,3,4-Oxadiazol -2-yl)acetate (2v). 134 mg, 68% yield; white solid; $R_f = 0.46$ (EA-Hexane = 1:2, *V:V*); m.p. 87-90 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (d, *J* = 8.1 Hz, 2H), 7.91 (d, *J* = 8.1 Hz, 2H), 4.23 (q, *J* = 7.1 Hz, 2H), 4.04 (s, 2H), 3.16–3.04 (m, 4H), 1.53 (sext, *J* = 7.4 Hz, 4H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.84 (t, *J* = 7.4 Hz, 6H); ¹³C {¹H} NMR (125 MHz, CDCl₃)

δ 166.2, 164.5, 161.1, 143.4, 127.8, 127.6, 127.1, 62.3, 49.9, 32.1, 22.0, 14.1, 11.2; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₅N₃NaO₅S [M+Na]⁺: 418.1407, found: 418.1412.

Ethyl 2-(5-(2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazol -5-yl)-1,3,4-oxadiazol-2-yl) acetate (2w). 128 mg, 60% yield; white solid; $R_f = 0.24$ (EA-Hexane = 1:3, *V*:*V*); m.p. 143-145 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.16 (s, 1H), 8.07 (d, *J* = 8.7 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 1H), 4.25 (q, *J* = 7.1 Hz, 2H), 4.03 (s, 2H), 3.90 (d, *J* = 6.4 Hz, 2H), 2.81 (s, 3H), 2.27 – 2.13 (m, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.08 (d, *J* = 6.7 Hz, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.6, 166.1, 162.6, 160.7, 160.0, 157.4, 132.6, 132.1, 125.8, 115.4, 114.3, 112.9, 103.2, 75.9, 62.3, 32.0, 28.3, 19.1, 17.6, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₂₂N₄NaO₄S [M+Na]⁺: 449.1254, found: 449.1244.

Ethyl 2-(5-([1,1'-biphenyl]-4-ylmethyl)-1,3,4-oxadiazol-2-yl) acetat (2x). 140 mg, 87% yield; white solid; $R_f = 0.32$ (EA-Hexane = 1:3, *V:V*); m.p. 74-76 °C; ¹H NMR (500 MHz, CDCl₃) δ 7.56 (d, *J* = 7.5 Hz, 4H), 7.46–7.41 (m, 2H), 7.40–7.31 (m, 3H), 4.25 (s, 2H), 4.19 (q, *J* = 7.0 Hz, 2H), 3.91 (s, 2H), 1.23 (t, *J* = 7.0 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 166.4, 166.4, 161.1, 140.7, 140.6, 132.8, 129.3, 128.9, 127.7, 127.6, 127.2, 62.1, 32.1, 31.6, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₁₉H₁₈N₂NaO₃ [M+Na]⁺: 345.1210, found: 345.1202.

Ethyl 2-(5-(1-(4-isobutylphenyl)ethyl)-1,3,4-oxadiazol-2-yl) acetate (2y). 130 mg, 82% yield; colorless liquid; $R_f = 0.43$ (EA-Hexane = 1:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 7.16 (d, *J* = 7.9 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 4.31 (q, *J* = 7.1 Hz, 1H), 4.15 (q, *J* = 7.1 Hz, 2H), 3.92–3.81 (m, 2H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.87 – 1.77 (m, 1H), 1.73 (d, *J* = 7.1 Hz, 3H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.87 (d, *J* = 6.5 Hz, 6H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.0, 166.3, 160.7, 141.0, 137.5, 129.6, 127.0, 62.0, 45.0,

37.1, 32.0, 30.2, 22.4, 19.5, 14.0; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₂₄N₂NaO₃ [M+Na]⁺: 339.1679, found: 339.1686.

Ethyl 2-(5-(2-(4-chlorophenoxy)propan-2-yl)-1,3,4-oxadiaz- ol-2-yl)acetate (2z). 138 mg, 85% yield; colorless liquid; $R_f = 0.31$ (EA-Hexane = 1:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 7.15 (d, *J* = 8.6 Hz, 2H), 6.67 (d, *J* = 8.6 Hz, 2H), 4.20 (q, *J* = 7.1 Hz, 2H), 3.98 (s, 2H), 1.79 (s, 6H), 1.24 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.2, 166.2, 161.5, 153.2, 129.5, 129.2, 123.0, 75.6, 62.3, 32.1, 26.0, 14.1; HRMS (ESI-TOF) *m/z* calcd for C₁₅H₁₇ClN₂NaO₄ [M+Na]⁺: 347.0769, found: 347.0777.

(B) General Procedure for the Synthesis of 1,3,4-Thiadiazole Compounds.

To a 15 mL sealed tube was added **3** (0.50 mmol), Ethyl 3, 3, 3-trifluoropropionate (0.55 mmol), Na_2CO_3 (0.75 mmol) and EtOH (5 mL). The resulting mixture was heated at 80 °C for the indicated time until the complete consumption of starting material as monitored by TLC or GC-MS analysis. After cooling, the reaction was diluted with EA and organic phase was washed successively with water (3×25 mL) and brine (3×25 mL), dried over anhydrous Na_2SO_4 , and filtered. The filtrate was concentrated in vacuo and purified by silica gel column chromatography (EA/Hexane) to afford desired product.

Ethyl 2-(5-phenyl-1,3,4-thiadiazol-2-yl)acetate (4a). 110 mg, 89% yield; yellow solid; $R_f = 0.31$ (EA-Hexane = 1:5, *V:V*); m.p. 88-90 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.00–7.88 (m, 2H), 7.53–7.44 (m, 3H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.22 (s, 2H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.1, 168.6 161.6, 131.2, 130.2, 129.3, 128.0, 62.2, 36.1, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₂N₂NaO₂S [M+Na]⁺: 271.0512, found: 271.0517.

Ethyl 2-(5-(4-fluorophenyl)-1,3,4-thiadiazol-2-yl)acetate (4b). 83 mg, 62% yield; yellow solid; $R_f = 0.38$

(EA-Hexane = 1:5, *V*:*V*); m.p. 86-88 °C;¹H NMR (500 MHz, CDCl₃) δ 7.98–7.92 (m, 2H), 7.19–7.14 (m, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 4.21 (s, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 168.9, 168.5, 164.5 (d, *J* = 252.3 Hz), 161.6, 130.0 (d, *J* = 9.1 Hz), 126.5 (d, *J* = 3.3 Hz), 116.5 (d, *J* = 22.2 Hz), 62.2, 36.1, 14.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -108.44; HRMS (ESI-TOF) *m/z* calcd for C₁₂H₁₁FN₂NaO₂S [M+Na]⁺: 289.0417, found: 289.0424.

Ethyl 2-(5-([1,1'-biphenyl]-4-yl)-1,3,4-thiadiazol-2-yl)acet-ate (4c). 117 mg, 72% yield; yellow solid; $R_f = 0.31$ (EA-Hexane = 1:5, *V:V*); m.p. 75-77 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.04 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.65–7.62 (m, 2H), 7.47 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 4.23 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.8, 168.6, 161.5, 144.0, 140.0, 129.1, 129.1, 128.4, 128.2, 127.9, 127.2, 62.2, 36.1, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₁₆N₂NaO₂S [M+Na]⁺:347.0825, found: 347.0817.

Ethyl 2-(5-(naphthalen-2-yl)-1,3,4-thiadiazol-2-yl)acetate (4d). 128 mg, 86% yield; yellow solid; $R_f = 0.41$ (EA-Hexane = 1:5, *V:V*); m.p. 65-67 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 8.09 (dd, J = 8.3, 1.8 Hz, 1H), 7.95–7.90 (m, 2H), 7.89–7.84 (m, 1H), 7.60–7.50 (m, 2H), 4.28 (q, J = 7.1 Hz, 2H), 4.24 (s, 2H), 1.33 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 170.3, 168.6, 161.6, 134.7, 133.2, 129.2, 128.8, 128.3, 128.0, 127.8, 127.6, 127.1, 124.6, 62.2, 36.2, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₆H₁₄N₂NaO₂S [M+Na]⁺: 321.0668, found: 321.0678.

Ethyl 2-(5-(pyrazin-2-yl)-1,3,4-thiadiazol-2-yl)acetate (4e). 88 mg, 70% yield; yellow solid; $R_f = 0.23$ (EA-Hexane = 1:4, *V:V*); m.p. 69-71 °C; ¹H NMR (500 MHz, CDCl₃) δ 9.56 (s, 1H), 8.64 (d, *J* = 26.1 Hz, 2H), 4.27 (q, *J* = 7.1 Hz, 2H), 4.24 (s, 2H), 1.31 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.3, 168.2, 164.4, 146.1, 145.0, 144.4, 142.6, 62.2, 36.2, 14.2; HRMS (ESI-TOF) *m/z* calcd

for C₁₀H₁₀N₄NaO₂S [M+Na]⁺: 273.0417, found: 273.0410.

$$\overset{H_2N}{\underset{N \searrow N}{\bigvee}} \overset{O}{\xrightarrow} OEt$$

Ethyl 2-(5-amino-1,3,4-thiadiazol-2-yl)acetate (4f). 57 mg, 61% yield; yellow solid; $R_f = 0.18$ (EA-Hexane = 1:1, *V:V*); m.p. 138-140 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 7.11 (s, 2H), 4.12 (q, *J* = 7.1 Hz, 2H), 3.96 (s, 2H), 1.20 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 169.5, 168.8, 150.3, 60.9, 35.4, 14.0; HRMS (ESI-TOF) *m/z* calcd for C₆H₉N₃NaO₂S [M+Na]⁺: 210.0308, found: 210.0315.

Ethyl2-(5-(dimethylamino)-1,3,4-thiadiazol-2-yl)acetate(4g). 88 mg, 82% yield; yellow liquid; $R_f = 0.21$ (EA-Hexane = 1:1, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 4.15 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 2H), 3.08 (s, 6H), 1.23 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 173.0, 168.9, 150.7, 61.6, 41.4, 36.2, 14.1.; HRMS (ESI-TOF) *m/z* calcd for C₈H₁₃N₃NaO₂S [M+Na]⁺: 238.0621, found: 238.0617.

(C) General Procedure for the Synthesis of 1,2,4-Triazole Compounds.

To a 15 mL sealed tube was added **5** (0.50 mmol), Ethyl 3, 3, 3-trifluoropropionate (0.55 mmol), Na_2CO_3 (0.75 mmol) and EtOH (5 mL). The resulting mixture was heated at 80 °C for the indicated time until the complete consumption of starting material as monitored by TLC or GC-MS analysis. After cooling, the reaction was diluted with EA and organic phase was washed successively with water (3×25 mL) and brine (3×25 mL), dried over anhydrous Na_2SO_4 , and filtered. The filtrate was concentrated in vacuo and purified by silica gel column chromatography (EA/Hexane) to afford desired product.

Ethyl 2-(5-phenyl-1H-1,2,4-triazol-3-yl)acetate (6a). 65 mg, 56% yield; yellow liquid; $R_f = 0.30$ (EA-Hexane = 2:3, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 12.64 (brs, 1H), 8.01–7.93 (m, 2H), 7.40–7.33 (m, 3H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.97 (s, 2H), 1.27 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.7, 160.1, 153.2, 129.8, 129.4, 128.8, 126.5, 62.0, 33.3, 14.2; HRMS (ESI-TOF) *m/z* calcd for $C_{12}H_{13}N_3NaO_2$ [M+Na]⁺: 254.0900, found: 254.0905.

Ethyl 2-(5-(p-tolyl)-1H-1,2,4-triazol-3-yl)acetate (6b). 37 mg, 30% yield; yellow liquid; $R_f = 0.45$ (EA-Hexane = 1:1, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 12.79 (brs, 1H), 7.82 (d, *J* = 7.8 Hz, 2H), 7.15 (d, *J* = 7.8 Hz, 2H), 4.19 (q, *J* = 7.1 Hz, 2H), 3.93 (s, 2H), 2.34 (s, 3H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.7, 159.6, 153.8, 139.9, 129.5, 129.2, 126.5, 61.8, 33.5, 21.5, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₅N₃NaO₂ [M+Na]⁺: 268.1056, found: 268.1050.

Ethyl 2-(5-(benzo[d][1,3]dioxol-5-yl)-1H-1,2,4-triazol-3-yl) acetate (6c). 55 mg, 40% yield; yellow solid; $R_f = 0.40$ (EA-Hexane = 1:1, *V:V*); m.p. 92-94 °C; ¹H NMR (500 MHz, CDCl₃) δ 12.35 (brs, 1H), 7.58–7.38 (m, 2H), 6.81 (d, *J* = 7.7 Hz, 1H), 5.98 (s, 2H), 4.23 (q, *J* = 6.9 Hz, 2H), 3.95 (s, 2H), 1.29 (t, *J* = 6.9 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.8, 160.1, 152.7, 149.0, 148.1, 123.8, 120.8, 108.6, 107.0, 101.5, 62.0, 33.3, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₃N₃NaO₄ [M+Na]⁺: 298.0798, found: 298.0805.

Ethyl 2-(5-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl) acetate (6d). 43 mg, 29% yield; yellow solid; $R_f = 0.41$ (EA-Hexane = 1:1, *V:V*); m.p. 88-89 °C; ¹H NMR (500 MHz, CDCl₃) δ 12.26 (brs, 1H), 8.23–8.09 (m, 2H), 7.67 (d, *J* = 8.1 Hz, 2H), 4.29 (q, *J* = 7.1 Hz, 2H), 4.04 (s, 2H), 1.33 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.6, 160.4, 151.2, 133.9, 131.4 (q, *J* = 33.3 Hz), 126.8, 125.8 (q, *J* = 3.7 Hz), 124.2 (q, *J* = 272.1 Hz), 62.3, 32.8, 14.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -62.75; HRMS (ESI-TOF) *m/z* calcd for C₁₃H₁₂F₃N₃NaO₂ [M+Na]⁺: 322.0774, found: 322.0766.

Ethyl 2-(5-(4-fluorophenyl)-1H-1,2,4-triazol-3-yl)acetate (6e). 45 mg, 36% yield; yellow solid; $R_f = 0.20$ (EA-Hexane = 1:2, *V:V*); m.p. 100-102 °C; ¹H NMR (500 MHz, CDCl₃) δ 12.56 (brs, 1H), 8.07–7.84 (m,

2H), 7.06 (t, J = 8.5 Hz, 2H), 4.23 (q, J = 7.1 Hz, 2H), 3.97 (s, 2H), 1.28 (t, J = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.7, 163.8 (d, J = 249.3 Hz), 160.4, 152.2, 128.5 (d, J = 8.4 Hz), 126.1, 115.8 (d, J = 21.9 Hz), 62.1, 33.1, 14.2; ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -111.39; HRMS (ESI-TOF) m/z calcd for C₁₂H₁₂FN₃NaO₂ [M+Na]⁺: 272.0806, found: 272.0812.

Ethyl 2-(5-([1,1'-biphenyl]-4-yl)-1H-1,2,4-triazol-3-yl)acet-ate (6f). 66 mg, 43% yield; yellow solid; $R_f = 0.39$ (EA-Hexane = 1:1, *V:V*); m.p. 106-108 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 14.14 (brs, 1H), 8.08 (d, *J* = 8.1 Hz, 2H), 7.80 (d, *J* = 7.4 Hz, 2H), 7.73 (d, *J* = 7.7 Hz, 2H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.39 (t, *J* = 7.3 Hz, 1H), 4.14 (q, *J* = 7.1 Hz, 2H), 3.90 (s, 2H), 1.21 (t, *J* = 7.1 Hz, 3H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 168.7, 160.4, 153.9, 140.9, 139.4, 129.0, 127.8, 127.0, 126.6, 126.4, 60.7, 33.4, 14.0; HRMS (ESI-TOF) *m/z* calcd for C₁₈H₁₇N₃NaO₂ [M+Na]⁺: 330.1213, found: 330.1217.

(D) Procedure for the Synthesis of 7.

A solution of KOH (23 mg, 0.39 mmol) in ethanol was added to a solution of **2a** (69 mg, 0.30 mmol) in ethanol, the mixture was stirred at room temperature for 6 h (monitored by TLC). The precipitated solid was filtered and treated with 1N HCl. After acidification, it was filtered again into afford white solid **7**.

2-(5-phenyl-1,3,4-thiadiazol-2-yl)acetic acid (7). 50 mg, 81% yield; white solid; R_f = 0.16 (EA-Hexane = 1:1, V:V); m.p. 111-112 °C; ¹H NMR (500 MHz, DMSO-*d*₆) δ 8.00–7.95 (m, 2H), 7.63–7.57 (m, 3H), 4.09 (s, 2H); ¹³C{¹H} NMR (125 MHz, DMSO-*d*₆) δ 168.5, 164.4, 162.0, 132.0, 129.5, 126.4, 123.3, 32.2; HRMS (ESI-TOF) *m/z* calcd for C₁₀H₈N₂NaO₃ [M+Na]⁺: 227.0427, found:227.0435.

(E) Procedure for the Synthesis of 8.

To a solution of 2a (69 mg, 0.30 mmol) in toluene (3 mL) was added benzylamine (64 mg, 0.60 mmol) and the resulting mixture was heated to reflux for 8 h. After cooling, the solvent was evaporated under reduced pressure and the residue was purified by column chromatography (EA-Hexane = 1:5) to afford

compound 8.

N-benzyl-2-(5-phenyl-1,3,4-thiadiazol-2-yl)acetamide (8). 62 mg, 70% yield; white solid; $R_f = 0.25$ (EA-Hexane = 1:2, *V:V*); m.p. 105-107 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.01 (d, *J* = 7.8 Hz, 2H), 7.57–7.47 (m, 4H), 7.35–7.26 (m, 5H), 4.49 (d, *J* = 5.6 Hz, 2H), 3.96 (s, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 165.4, 164.3, 161.8, 137.7, 132.1, 129.2, 128.8, 127.9, 127.7, 127.1, 123.4, 44.1, 33.5; HRMS (ESI-TOF) *m/z* calcd for C₁₇H₁₅N₃NaO₂ [M+Na]⁺: 316.1056, found:316.1062.

(F) Procedure for the Synthesis of 9.

To a stirred solution of **2a** (69 mg, 0.30 mmol) in 3 mL of tetrahydrofuran/water (5/1) was added NaBH₄ (56 mg, 1.50 mmol) at 0 °C and the reaction mixture was slowly warmed to room temperature. Then additional NaBH₄ (34 mg, 0.90 mmol) was added and stirred for 3 h at room temperature. After the reaction was carefully quenched with 1N HCl, the reaction mixture concentrated under reduced pressure to give crude product. The crude product was dissolved in EA then washed with brine and the organic layer was dried over anhydrous Na₂SO₄. The organic mixture was concentrated in vacuo and the residue was purified by column chromatography (EA-Hexane = 1:3) to afford **9**.

2-(5-phenyl-1,3,4-thiadiazol-2-yl)ethan-1-ol (9). 47 mg, 83% yield; colorless liquid; $R_f = 0.20$ (EA-Hexane = 1:2, *V:V*); ¹H NMR (500 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.51–7.41 (m, 3H), 4.11 (t, *J* = 5.8 Hz, 2H), 3.60 (s, 1H), 3.14 (t, *J* = 5.8 Hz, 2H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 165.3, 165.0, 131.8, 129.1, 126.9, 123.8, 58.8, 29.2; HRMS (ESI-TOF) *m/z* calcd for C₁₀H₁₀N₂NaO₂ [M+Na]⁺: 213.0634, found: 213.0630.

(G) Procedure for the Synthesis of 10.

To a solution of **2a** (69 mg, 0.30 mmol) in dry acetonitrile (3 mL) was added K_2CO_3 (124 mg, 0.90 mmol), CH_3CH_2Br (81 mg, 0.75 mmol). The vigorously stirred mixture was heated to 85 °C for 3 h (monitored by TLC). After cooling, the mixture was filtered through a pad of celite. The organic mixture was concentrated in vacuo and the residue was purified by column chromatography (EA-Hexane = 1:5)

to afford 10.

Ethyl 2-(5-phenyl-1,3,4-thiadiazol-2-yl)butanoate (10). 59 mg, 76% yield; colorless liquid; $R_f = 0.42$ (EA-Hexane = 1:3, V:V); ¹H NMR (500 MHz, CDCl₃) δ 8.07–8.00 (m, 2H), 7.54–7.45 (m, 3H), 4.21 (q, J = 7.1 Hz, 2H), 3.98 (t, J = 7.4 Hz, 1H), 2.20 (ddq, J = 33.9, 14.2, 7.4 Hz, 2H), 1.24 (t, J = 7.1 Hz, 3H), 1.03 (t, J = 7.4 Hz, 3H); ¹³C{¹H} NMR (125 MHz, CDCl₃) δ 169.2, 165.4, 163.8, 131.8, 129.1, 127.0, 123.9, 61.9, 45.2, 23.5, 14.2, 11.9; HRMS (ESI-TOF) m/z calcd for C₁₄H₁₆N₂NaO₃ [M+Na]⁺: 283.1053, found: 283.1057.

(H) Procedure for the Synthesis of 11.

Under N₂ atmosphere, to a solution of **2d** (93 mg, 0.30 mmol) and Pd(PPh₃)₄ (17 mg, 0.015 mmol) in dry toluene (5 mL) was added K₂CO₃ (83 mg, 0.60 mmol), 4-ethoxycarbonylphenylboronic acid (116 mg, 0.60 mmol). The vigorously stirred mixture was heated to 90 °C for 5 h (monitored by TLC). After cooling, the mixture was filtered through a pad of celite, the filter cake was washed with EA. The organic mixture was concentrated in vacuo and the residue was purified by column chromatography (EA-Hexane = 1:7) to afford **11**.

Ethyl 4'-(5-(2-ethoxy-2-oxoethyl)-1,3,4-thiadiazol-2-yl)-[1, 1'-biphenyl]-4-carboxylate (11). 68 mg, 60% yield; white solid; $R_f = 0.26$ (EA-Hexane = 1:3, *V:V*); m.p. 87-88 °C; ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 8.0 Hz, 4H), 7.74 (d, J = 7.9 Hz, 2H), 7.68 (d, J = 7.9 Hz, 2H), 4.40 (q, J = 7.1 Hz, 2H), 4.25 (q, J = 7.1 Hz, 2H), 4.05 (s, 2H), 1.41 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H); ¹³C {¹H} NMR (125 MHz, CDCl₃) δ 166.4, 166.4, 165.4, 160.5, 144.0, 143.4, 130.3, 130.2, 128.0, 127.6, 127.2, 123.3, 62.3, 61.2, 32.2, 14.4, 14.2; HRMS (ESI-TOF) *m/z* calcd for C₂₁H₂₀N₂NaO₅ [M+Na]⁺: 403.1264, found:403.1255. **Reference:**

1 (a) S. A. Carvalho, L. O. Feitosa, M. Soares, T. E. M. M. Costa, M. G. Henriques, K. Salomão, S. L.

De Castro, M. Kaiser, R. Brun, J. L. Wardell, S. M.S.V. Wardell, G. H.G. Trossini, A. D. Andricopulo, E. F. Da Silva and C. A. M. Fraga, Design and Synthesis of New (*E*)-Cinnamic N-Acylhydrazones as Potent Antitrypanosomal Agents, *Eur. J. Med. Chem.*, 2012, **54**, 512–521. (b) M.-U. Nisa, M. A. Munawar, A. Iqbal, A. Ahmed, M. Ashraf, Q.-T.-A. A. Gardener and M. A. Khan, Synthesis of Novel 5-(Aroylhydrazinocarbonyl)escitalopram as Cholinesterase Inhibitors, *Eur. J. Med. Chem.*, 2017, **138**, 396–406.

2 N. B. Almandila, M. Tahaa, F. Rahimb, A. Wadoodc, S. Imrand, M. A. Alqahtanie, Y. A. Bamaroufe,
M. Ibrahima, A. Mosaddika and M. Gollapallie, *Bioorg. Chem.*, 2019, 85, 109–116.

3 (a) N. Lv, Z. Chen, Y. Liu, Z. Liu and Y. Zhang, Synthesis of Functionalized Indenones via Rh-Catalyzed C–H Activation Cascade Reaction, *Org. Lett.*, 2017, **19**, 2588–2591. (b) V. K. Burianova, D. S. Bolotin, A. S. Mikherdov, A. S. Novikov, P. P. Mokolokolo, A. Roodt, V. P. Boyarskiy, D. Dar'in, M. Krasavin, V. V. Suslonov, A. P. Zhdanov, K. Y. Zhizhind and N. T. Kuznetsovd, Mechanism of Generation of *closo*-Decaborato Amidrazones. Intramolecular Non-covalent B–H… π (Ph) Interaction Determines Stabilization of the Configuration Around the Amidrazone C=N Bond, *New J. Chem.*, 2018, **42**, 8693–8703.

3. NMR Spectra

Ethyl 2-(5-(p-tolyl)-1,3,4-oxadiazol-2-yl)acetate (2b)

¹H NMR (500 MHz, CDCl₃) spectra of **2b**

Ethyl 2-(5-(4-fluorophenyl)-1,3,4-thiadiazol-2-yl)acetate (2c)

¹H NMR (500 MHz, CDCl₃) spectra of 2c

¹⁹F NMR (376 MHz, CDCl₃) spectra of 2c

Ethyl 2-(5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)acetate (2e)

¹H NMR (500 MHz, CDCl₃) spectra of 2e

Ethyl 2-(5-(4-cyanophenyl)-1,3,4-oxadiazol-2-yl)acetate (2f)

¹H NMR (500 MHz, CDCl₃) spectra of 2f

Ethyl 2-(5-(2-methoxyphenyl)-1,3,4-oxadiazol-2-yl)acetate (2g)

¹H NMR (500 MHz, CDCl₃) spectra of 2g

Ethyl 2-(5-(3-fluorophenyl)-1,3,4-oxadiazol-2-yl)acetate (2h)

¹³C NMR (125 MHz, CDCl₃) spectra of 2i

Ethyl 2-(5-(naphthalen-2-yl)-1,3,4-oxadiazol-2-yl)acetate (2j) ¹H NMR (500 MHz, CDCl₃) spectra of 2j

¹H NMR (500 MHz, CDCl₃) spectra of 2l

Ethyl 2-(5-(1H-indol-3-yl)-1,3,4-oxadiazol-2-yl)acetate (2m)

¹H NMR (600 MHz, DMSO-*d*₆) spectra of **2m**

¹H NMR (500 MHz, CDCl₃) spectra of 20

Ethyl 2-(5-methyl-1,3,4-oxadiazol-2-yl)acetate(2p)

Ethyl 2-(5-propyl-1,3,4-oxadiazol-2-yl)acetate (2q)

¹H NMR (500 MHz, CDCl₃) spectra of **2q**

Ethyl 2-(5-benzyl-1,3,4-oxadiazol-2-yl)acetate (2r)

¹H NMR (500 MHz, CDCl₃) spectra of 2s

Ethyl 2-(5-(cyanomethyl)-1,3,4-oxadiazol-2-yl)acetate (2t)

¹³C NMR (125 MHz, CDCl₃) spectra of 2u

Ethyl 2-(5-(4-(N,N-dipropylsulfamoyl)phenyl)-1,3,4-oxadiazol-2-yl)acetate (2v) ¹H NMR (500 MHz, CDCl₃) spectra of 2v

¹³C NMR (125 MHz, CDCl₃) spectra of 2v

Ethyl 2-(5-(2-(3-cyano-4-isobutoxyphenyl)-4-methylthiazol-5-yl)-1,3,4-oxadiazol-

2-yl)acetate (2w)

¹H NMR (500 MHz, CDCl₃) spectra of **2w**

Ethyl 2-(5-([1,1'-biphenyl]-4-ylmethyl)-1,3,4-oxadiazol-2-yl)acetate (2x)

¹H NMR (500 MHz, CDCl₃) spectra of **2**x

¹³C NMR (125 MHz, CDCl₃) spectra of 2x

Ethyl 2-(5-(1-(4-isobutylphenyl)ethyl)-1,3,4-oxadiazol-2-yl)acetate (2y) ¹H NMR (500 MHz, CDCl₃) spectra of 2y

Ethyl 2-(5-(2-(4-chlorophenoxy)propan-2-yl)-1,3,4-oxadiazol-2-yl)acetate (2z) ¹H NMR (500 MHz, CDCl₃) spectra of 2z

Ethyl 2-(5-(naphthalen-2-yl)-1,3,4-thiadiazol-2-yl)acetate(4d)

¹H NMR (500 MHz, CDCl₃) spectra of 4e

Ethyl 2-(5-amino-1,3,4-thiadiazol-2-yl)acetate (4f)

Ethyl 2-(5-(dimethylamino)-1,3,4-thiadiazol-2-yl)acetate(4g)

Ethyl 2-(5-phenyl-1H-1,2,4-triazol-3-yl)acetate (6a)

¹H NMR (500 MHz, CDCl₃) spectra of 6a

Ethyl 2-(5-(p-tolyl)-1H-1,2,4-triazol-3-yl)acetate (6b)

¹H NMR (500 MHz, CDCl₃) spectra of **6b**

Ethyl 2-(5-(benzo[d][1,3]dioxol-5-yl)-1H-1,2,4-triazol-3-yl)acetate (6c)

¹H NMR (500 MHz, CDCl₃) spectra of 6c

Ethyl 2-(5-(4-(trifluoromethyl)phenyl)-1H-1,2,4-triazol-3-yl)acetate (6d)

¹H NMR (500 MHz, CDCl₃) spectra of 6d

Ethyl 2-(5-(4-fluorophenyl)-1H-1,2,4-triazol-3-yl)acetate (6e) ¹H NMR (500 MHz, CDCl₃) spectra of 6e

Ethyl 2-(5-([1,1'-biphenyl]-4-yl)-1H-1,2,4-triazol-3-yl)acetate (6f)

¹H NMR (500 MHz, DMSO-*d*₆) spectra of **6f**

2-(5-phenyl-1,3,4-thiadiazol-2-yl)acetic acid (7)

¹³C NMR (125 MHz, DMSO-*d*₆) spectra of 7

N-benzyl-2-(5-phenyl-1,3,4-thiadiazol-2-yl)acetamide (8)

¹H NMR (500 MHz, CDCl₃) spectra of 8

2-(5-phenyl-1,3,4-thiadiazol-2-yl)ethan-1-ol (9)

¹H NMR (500 MHz, CDCl₃) spectra of 9

Ethyl 2-(5-phenyl-1,3,4-thiadiazol-2-yl)butanoate (10)

Ethyl 4'-(5-(2-ethoxy-2-oxoethyl)-1,3,4-thiadiazol-2-yl)-[1,1'-biphenyl]-4-carboxylate (11) ¹H NMR (500 MHz, CDCl₃) spectra of 11

4. X-ray structure of 2a (CCDC 2170479)

The structure of 2a was further determined by single crystal X-ray analysis. (CCDC 2170479) contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre).

X-ray structure of product 2a (ellipsoid contour at 50% probability)

Experimental

Single crystals of 2a (C₁₂H₁₂N₂O₃) were grown by slow evaporation in ethyl acetate/ acetonitrile = 2/5 under air atmosphere. A suitable crystal was selected and mounted on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 100(2) K during data collection. Using Olex2, the structure was solved with the Shelxs structure solution program using Direct Methods.

Crystal structure determination of 2a

Crystal Data for C₁₂H₁₂N₂O₃ (*M*=232.24 g/mol): triclinic, space group P-1 (no. 2), *a*= 5.6320(5)Å, b = 8.3085(7)Å, c = 12.2276(16)Å, $a = 85.953(9)^{\circ}$, $\beta = 80.093(9)^{\circ}$, $\gamma = 75.863(7)^{\circ}$, V = 546.33(10)Å³, Z = 2, T = 100(2)K, μ (MoK α)= 0.103 mm⁻¹, Dcalc = 1.412 g/cm³.

Table 1. Crystal data and structure refinement for	2a
--	----

Empirical formula	$C_{12}H_{12}N_2O_3$
Formula weight	232.24
Temperature/K	100(2)
Crystal system	triclinic
Space group	P-1
a/Å	5.6320(5)
b/Å	8.3085(7)
c/Å	12.2276(16)
α/°	85.953(9)
β/°	80.093(9)
γ/°	75.863(7)
Volume/Å ³	546.33(10)

Z	2				
$\rho_{calc}g/cm^3$	1.412				
µ/mm ⁻¹	0.103				
F(000)	244.0				
Crystal size/mm ³	$0.25 \times 0.2 \times 0.2$				
Radiation	MoKa ($\lambda = 0.71073$)				
2Θ range for data collection/° 6.768 to 59.318					
Index ranges	$-7 \le h \le 7, -11 \le k \le 11, -14 \le l \le 16$				
Reflections collected	4184				
Independent reflections	2534 [$R_{int} = 0.0441, R_{sigma} = 0.0812$]				
Data/restraints/parameters	2534/0/156				
Goodness-of-fit on F ²	1.047				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0544, wR_2 = 0.1159$				
Final R indexes [all data]	$R_1 = 0.0735, wR_2 = 0.1323$				
Largest diff. peak/hole / e Å ⁻³ 0.26/-0.28					

5. X-ray structure of 4d (CCDC 2178538)

The structure of **4d** was further determined by single crystal X-ray analysis. (CCDC 2178538) contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre).

X-ray structure of product 4d (ellipsoid contour at 50% probability)

Experimental

Single crystals of **4d** ($C_{16}H_{14}N_2O_2S$) were grown by slow evaporation in ethyl acetate/ acetonitrile = 1/5 under air atmosphere. A suitable crystal was selected and mounted on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 300 K during data collection. Using Olex2, the structure was solved with the Shelxs structure solution program using Direct Methods.

Crystal structure determination of 4d

Crystal Data for C₁₆H₁₄N₂O₂S (*M*=298.35 g/mol): space group P-1, *a*=7.7462(4)Å, *b*=9.2543(4)Å,

c = 10.7494(5)Å, $\alpha = 106.819(4)^{\circ}$, $\beta = 100.376(4)^{\circ}$, $\gamma = 93.807(4)^{\circ}$, V = 546.33(10)Å³, Z = 2, T = 300 K,

 $Dcalc = 1.377 \text{ g/cm}^3$.

Bond precision:		C-C = 0.0024 A			Wavelength=0.71073		
Cell:	Cell: a=7.7462(4)		b=9.2543(4)		c=10.7494(5)		
	alpha=106.81	9(4)	beta=100.376(4)		gamma=93.807(4)		
Temperature	300 K						
		Calculate	d		Reported		
Volume		719.78(6)			719.78(6)		
Space group		P -1			P -1		
Hall group		-P 1			-P 1		
Moiety form	ıla	C16 H14	N2 O2 S		C16 H14 N2 O2 S		
Sum formula		C16 H14	N2 O2 S		C16 H14 N2 O2 S		
Mr		298.35			298.35		
Dx,g cm-3		1.377			1.377		
Z		2			2		
Mu (mm-1)		0.230			0.230		
F000		312.0			312.0		
F000'		312.37					
h,k,lmax		11,13,15			10,13,15		
Nref		4560			3569		
Tmin,Tmax					0.651,1.000		
Tmin'							
Correction m	ethod= # Repo	rted T Lin	nits: Tmin=0.651 T	max	x=1.000		
AbsCorr = M	ULTI-SCAN						
Data completeness= 0.783 Theta(max)=		x)= 3	30.912				
R(reflections)= 0.0392(2468)			wR2(reflections)= 0.1088(3569)				
S = 1.039		Npar	= 191				

Table 2. Crystal data and structure refinement for 4d

6. X-ray structure of 6f (CCDC 2178536)

The structure of **6f** was further determined by single crystal X-ray analysis. (CCDC 2178536) contains the supplementary crystallographic data for this structure. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre).

X-ray structure of product 6f (ellipsoid contour at 50% probability)

Experimental

Single crystals of **6f** ($C_{18}H_{17}N_3O_2$) were grown by slow evaporation in ethyl acetate/ acetonitrile = 1/1 under air atmosphere. A suitable crystal was selected and mounted on a XtaLAB Synergy R, DW system, HyPix diffractometer. The crystal was kept at 300 K during data collection. Using Olex2, the structure was solved with the Shelxs structure solution program using Direct Methods.

Crystal structure determination of 6f

Crystal Data for C₁₈H₁₇N₃O₂ (*M*=307.34 g/mol): space group P21/c, *a*= 8.4347(6)Å, *b*= 5.1670(3)Å, *c* = 35.992(2)Å, *a*=90°, *β*= 92.243(5)°, *γ*=90°, *V*= 546.33(10)Å³, *Z*= 4, *T*= 300 K, *Dcalc* = 1.302 g/cm³.

Bond precision:		C-C = 0.0021 A		Wavelength=0.71073	
Cell:	a=8.4347(6)	1	b=5.1670(3)	c=35.992(2)	
	alpha=90		beta=92.243(5)	gamma=90	
Temperature:	300 K				
		Calculate	ed		Reported
Volume		1567.41((17)		1567.41(17)
Space group		P 21/c			P 1 21/c 1
Hall group		-P 2ybc			-P 2ybc
Moiety form	ıla	C18 H17	' N3 O2		C18 H17 N3 O2
Sum formula		C18 H17	' N3 O2		C18 H17 N3 O2
Mr		307.35			307.34
Dx,g cm-3		1.302			1.302
Ζ		4			4
Mu (mm-1)		0.087			0.087
F000		648.0			648.0
F000'		648.27			
h,k,lmax		12,7,51			11,6,45
Nref		4880			3975
Tmin,Tmax		0.992,0.9	996		0.906,1.000
Tmin'		0.987			

Table 3. Crystal data and structure refinement for 6f

Correction method= # Reported T Limits: Tmin=0.906 Tmax=1.000

AbsCorr = MULTI-SCANData completeness= 0.815Theta(max)= 30.717R(reflections)= 0.0495(2694)wR2(reflections)= 0.1339(3975)S = 1.020Npar= 250