Electronic Supplementary Information

(New Journal of Chemistry)

Construction of NiCo-LDH/g-C₃N₄ heterojunctions as efficient

photocatalysts for enhanced degradation of tetracycline hydrochloride

and hydrogen evolution

Jiajun Nong^{a,†}, Yuexiang Jin^{b,†}, Jun Tan^c, Hongxia Ma^c, Yuan Lian^{a,*}

^aCollege of Material and Textile Engineering, Jiaxing University, Jiaxing 314001, China
^bJiaxing Huanke Environmental New Material Technology Co., LTD, Jiaxing 314001, China
^cCollege of Biological, Chemical Sciences and Engineering, Jiaxing University,

^cCollege of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing 314001, China

^{*} Corresponding author: hnlianyuan@126.com

[†] These authors contributed equally to this work

Fig. S1 AFM images of CN and LDH12/CN samples.

Fig. S2 TEM images and HRTEM images of pure CN (a-b) and pure LDH (c-d).

Fig. S3 The XRD pattern of the LDH12/CN nanocomposite before and after the photocatalytic reaction (a), SEM image of the LDH12/CN nanocomposite after the photocatalytic reaction (b).

Sample	20	Lattice plane	The spacing
CN	27.5°	(002)	0.32 nm
LDH	37.8°	(015)	0.24 nm

 Table S1. The lattice spacing of the CN and LDH.

Table S2. Comparison of the H_2 revolution rates with other photocatalysts.

Catalant	Light	Sacrificial	H ₂ yield	Reaction	Ref.	
Catalyst	source*	reagent	$(\mu mol \cdot g^{-1})$	time (h)		
LDH12/CN	λ>400 nm 300 W Xe	15 vol.% TEOA	1355.0	3	This work	
g-C ₃ N ₄ /Zn-Ti LDH	λ>420 nm 300 W Xe	20 vol.% CH ₃ OH	809.35	5	[S1]	
NiAl-LDH/g- C ₃ N ₄ /Ag ₃ PO ₄	250 W quartz tungsten halogen lamp	10 vol.% СН ₃ ОН	1072.0	4	[S2]	
Zn-Cr-LDH-g-C ₃ N ₄	λ>420 nm	10 vol.% TEOA	778.5	5	[S3]	

	300 W Xe				
Fe-Ni-LDH/g-C ₃ N ₄	/	10 vol % TEO A	1348	4	[S4]
	300 W Xe	10 VOI. /0 TEOA			
ACN-550	190nm < λ	10 vol.% TEOA	173.3	6	
	< 1100 nm				[S5]
	300 W Xe				

*Xe, xenon lamp.

Notes and references

[S1] D. Sun, D. Chi, Z. Yang, Z. Xing, J. Yin, Z. Li, Q. Zhu, W. Zhou. Mesoporous g-C₃N₄/Zn-Ti LDH laminated van der Waals heterojunction nanosheets as remarkable visible-light-driven photocatalysts. *Int. J. Hydrogen Energ.*, 2019, 44, 16348-16358.

[S2] S. Megala, P. Ravi, P. Maadeswaran, M. Navaneethan, M. Sathish, R. Ramesh. The construction of a dual direct Z-scheme NiAl-LDH/g-C₃N₄/Ag₃PO₄ nanocomposite for enhanced photocatalytic oxygen and hydrogen evolution. *Nanoscale Adv.*, 2021, **3**, 2075-2088.

[S3] J.M. Lee, J.H. Yang, N.H. Kwon, Y.K. Jo, J.H. Choy, S.J. Hwang. Intercalative hybridization of layered double hydroxide nanocrystals with mesoporous g-C₃N₄ for enhancing visible light-induced H₂ production efficiency. *Dalton T.*, 2018, **47**, 2949-2955.

[S4] B. Wang, J. Pan, Z. Jiang, Z. Dong, C. Zhao, J. Wang, C. Song, Y. Zheng, C. Li. The bimetallic iron-nickel sulfide modified g-C₃N₄ nano-heterojunction and its photocatalytic hydrogen production enhancement. *J. Alloys Compd.*, 2018, **766**, 421-428.

[S5] F. Meng, W. Tian b, Z. Tia, X. Tan, H. Zhang, S. Wang. Enhanced photocatalytic organic pollutant degradation and H₂ evolution reaction over carbon nitride nanosheets: N defects abundant materials. *Sci. Total Environ.*, 2022, **851**, 158360.