Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Novel porous organic polymers functionalized by metalloporphyrin and phosphonium salt for efficient synergistic catalysis of CO₂ conversion under mild conditions

Zhifeng Dai,^{1,2*} Shiting Wang,¹ Ning Zhou,¹ Yuxia Liu,¹ Yubing Xiong^{1,2*}

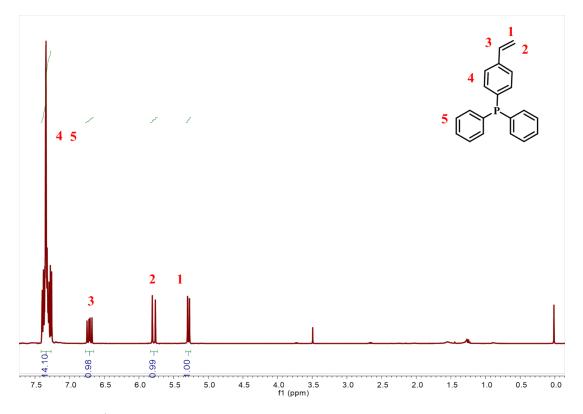
¹Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang Province, China.

²Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China

Correspondence to: Prof. Dr. Yubing Xiong (<u>yubing_xiong@163.com</u>)

EXPERIMENT SECTION

Synthesis of 4-vinylbenzaldehyde. 4-Vinylbenzaldehyde was synthesized according to the previous reports [1]. Typically, magnesite powders (4.25 g, 170 mmol, 1.7 eq) was placed in a 250 mL round-bottom flask equipped with a magnetic stirring bar. After addition of anhydrous THF (50 mL) under N₂ atmosphere, 4-bromostyrene (18.32 g, 100 mmol, 1 eq) was slowly added into the flask in an ice water bath, followed by stirring at room temperature for 2 h. Then, DMF (7.32 g, 100 mmol, 1 eq) was slowly added into the solution in an ice water bath, and stirred at room temperature overnight. The reaction was quenched using saturated aqueous solution of NH₄Cl, and the mixture was extracted by Ethyl acetate. The organic layer was filtered and concentrated. The residue was purified by silica gel chromatography (petroleum ether: ethyl acetate =10:1 v/v) to give 4-vinylbenzaldehyde as yellowish oil (9.78 g, 74.07% yield). 4-vinylbenzaldehyde was checked through ¹H NMR measurement, as illustrated in **Figure S3** in the Supporting Information. ¹H NMR (400 MHz, Chloroform-*d*) δ 9.99 (s, 1H), 7.84 (d, J = 8.3 Hz, 2H), 7.55 (d, J = 8.2 Hz, 2H), 6.77 (dd, J = 17.6, 10.9 Hz, 1H), 5.91 (d, J = 17.6 Hz, 1H), 5.44 (d, J = 10.9 Hz, 1H) ppm.


Synthesis of quaternized poly(4-(diphenylphosphino)-styrene) (PPh₂PStD). A typical protocol is as follows: Ph₂PSt (2.00 g, 7 mmol) and AIBN (12.3 mg, 0.075 mmol) were introduced into a round-bottomed flask with 10 mL DMF. After three freeze-thaw cycles under reduced pressure, the flask was recharged with nitrogen and placed in a preheated oil bath with a stirring bar. The polymerization was conducted at 65 °C for 24 h under N₂ atmosphere. Then, the solution was cooled down to room temperature. To afford the product, the as-obtained viscous solution was poured into abundant diethyl ether. White solid was produced and the raw product was collected by filtration. The product (PPh₂PSt 1.64 g, 81.67% yield) was obtained after washing with diethyl ether and dried on vacuum at 50 °C overnight.

PPh₂PSt (1.00 g) and 1-bromododecane (3.5 g, 14 mmol) were introduced into a round-bottomed flask with 10 mL DMF. The operation is the same as above. The final product (PPh₂PStD 1.54 g, 89.28% yield) was obtained after washing with diethyl ether and dried on vacuum at 50 °C overnight.

Synthesis of metalized PVPP (PCoVPP). In a typical protocol, VPP (0.69 g, 0.9 mmol) were dissolved in NMP (5 mL), followed by the addition of AIBN (20 mg, 0.12 mmol). After treatment in an autoclave at 200 °C for 72 h, the reaction mixture was washed with DMF and purified using Soxhlet extraction (DCM, 72 h) to give the dark-purple product, which was denoted as PVPP (0.6814 g, 98.85% yield).

Typically, PVPP (0.30 g) and DMF (10 mL) were added into a 50 mL two neck round-bottom flask. After refluxing at 100 °C, $CoCl_2 \cdot 6H_2O$ (0.51 g, 2.1 mmol) was added into the flask, and stirred at 100 °C overnight. After cooling down to room temperature, HCl (3.0 M, 60 mL) was added under air atmosphere to oxide Co^{2+} . After reacted for 5 h, the product was obtained by filtration and washing with water several times. The solvent was removed and the as-obtained product (0.27 g, 88.9% yield) was dried in vacuum for 10 h at 80 °C.

Leaching experiment on reactions of epoxides and CO_2 . The coupling reactions of CO_2 with epoxides were performed in the 25 mL Schlenk tubes with CO_2 balloons and magnetic stirrers. In a 25 mL Shrek tube was charged with catalyst and epoxide. The reaction mixture was degassed using three freeze-pump-thaw cycles, then a CO_2 balloon was added to the tube and the reaction was stirred at 80°C for 24 hours. The catalyst was removed by filtration, the filtrate was added to a clean Shrek tube, the reaction mixture was degassed using three freeze-pump-thaw cycles, then a CO_2 balloon was added to the tube, stirred at 80 °C and the reaction continued for 24 hours. ¹H NMR confirmed the selectivity and conversion of the target product.

Figure S1 ¹H NMR of the vinyl-functionalized phosphonium monomer 4-(diphenylphosphino) styrene (Ph₂PSt).

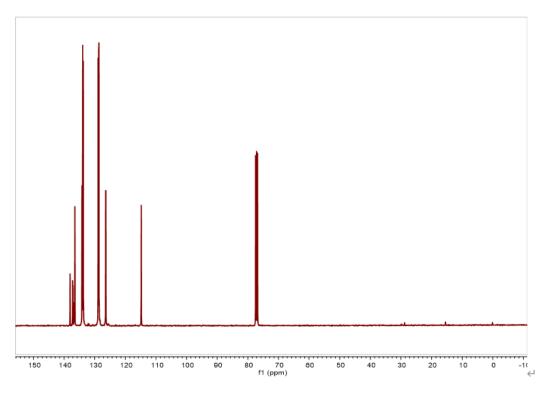


Figure S2 13 C NMR of the vinyl-functionalized phosphonium monomer 4-(diphenylphosphino) styrene (Ph₂PSt).

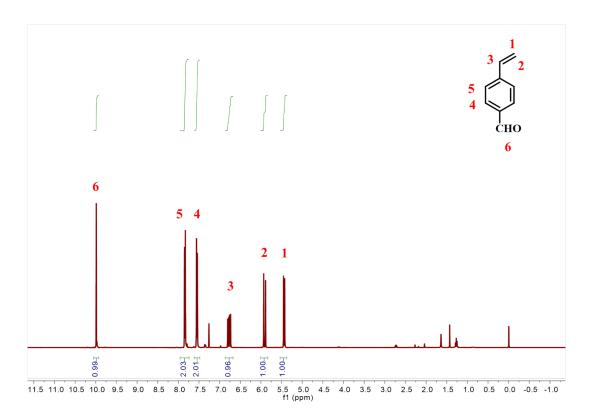
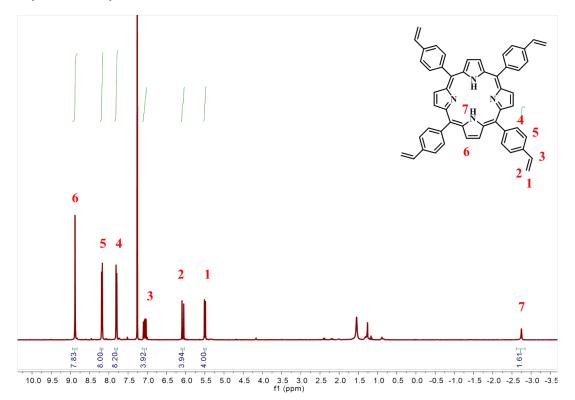
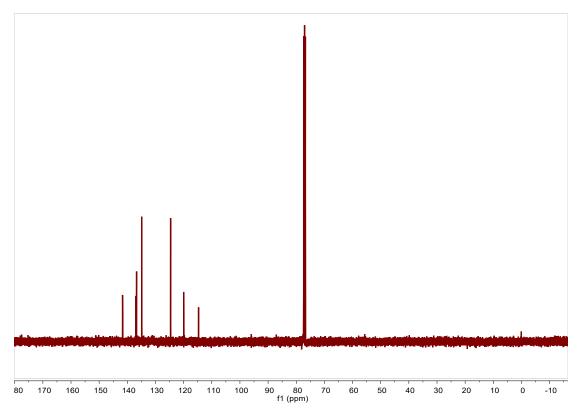




Figure S3 ¹H NMR of the vinyl-functionalized porphyrin monomer 4-vinylbenzaldehyde.

Figure S4 ¹H NMR of the vinyl-functionalized porphyrin monomer 5,10,15,20tetrakis(4-vinylphenyl)-21H,23H-porphyrin (VPP).

Figure S5 ¹³C NMR of the vinyl-functionalized porphyrin monomer 5,10,15,20tetrakis(4-vinylphenyl)-21H,23H-porphyrin (VPP).

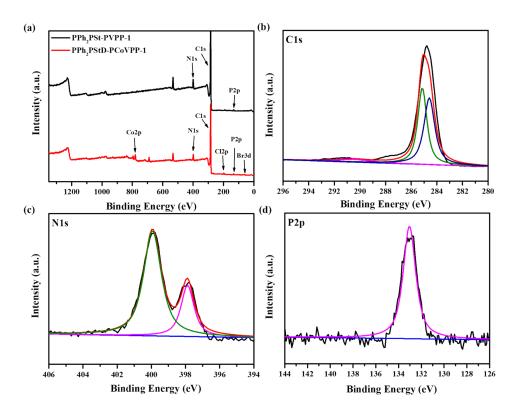
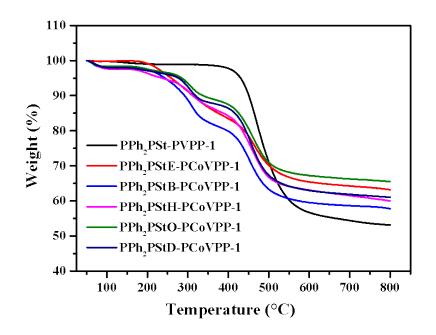
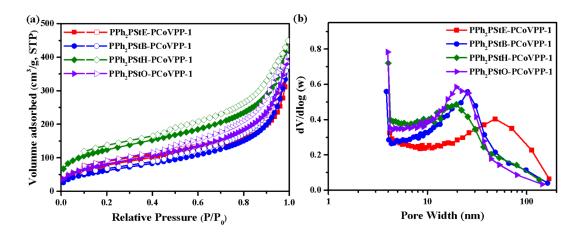
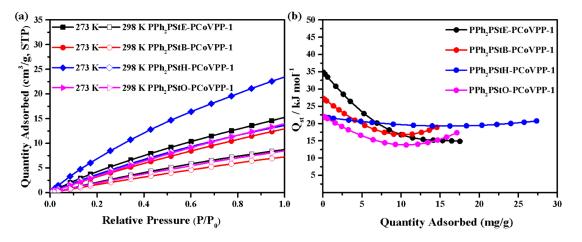




Figure S6 (a) XPS full spectra of PPh₂PSt-PVPP-1 and PPh₂PStD-PCoVPP-1; (b) C1s

spectrum, (c) N1s spectrum, (d) P2p spectrum of PPh₂PSt-PVPP-1.

Figure S7 TG curves of PPh₂PSt-PVPP-1 and PPh₂PStR-PCoVPP-1.


Figure S8 N₂ sorption isotherms (a) and pore size distribution (b) of PPh₂PStE-PCoVPP-1, PPh₂PStB-PCoVPP-1, PPh₂PStH-PCoVPP-1 and PPh₂PStO-PCoVPP-1.

Entry	Catalysts	BET surface area (m ² /g)	Average pore width (nm)	Pore volume (cm ³ /g)	
1	PPh ₂ PSt-PVPP-1	654.64	6.00	0.95	
2	PPh ₂ PStE-PCoVPP-1	291.88	8.15	0.59	
3	PPh ₂ PStB-PCoVPP-1	233.96	9.84	0.58	
4	PPh ₂ PStH-PCoVPP-1	450.09	6.17	0.69	
5	PPh ₂ PStO-PCoVPP-1	305.24	8.19	0.63	
6	PPh ₂ PStD-PCoVPP-1	380.57	6.96	0.64	

Table S1 Textural parameters of heterogeneous catalysts.

Table S2 The relative content of each element of catalysts.

Catalysta	Element (%)					
Catalysts	С	Ν	Р	Co	Cl	Br
PPh ₂ PSt-PVPP-1	92.37	6.75	0.88	-	-	-
PPh2PStD-PCoVPP-1	90.1	6.22	1.31	1.16	1.04	0.17

Figure S9 (a) Gas sorption isotherm curves of different polymeric catalysts at 273 K (solid icons) and 298 K (hollow icons); (b) Isosteric heat (Q_{st}) of CO₂ adsorption of PPh₂PStE-PCoVPP-1, PPh₂PStB-PCoVPP-1, PPh₂PStH-PCoVPP-1 and PPh₂PStO-PCoVPP-1.

Entry	Catalysts	Conversion	TON	TOF	Ref	
	5	(%)		(h^{-1})		
1 ^a	PPh ₂ PStD-PCoVPP-1	98.9	594.15	12.38	This work	
2 ^b	SILP-5	89	19.1	2.7	Ref [4]	
3°	CILs-POF _{0.3}	83.6	279	11.6	Ref [5]	
4 ^d	MFM-KUST	99.9	83.3	11.6	Ref [6]	
5 ^e	Phenc ⁺ -PHP-2	83	18.44	0.26	Ref [7]	
6^{f}	ZnTCPP⊂(Br−)Etim-	01.1	05	6.9	D of [9]	
	UiO-66 (0.95)	91.1	95	6.8	Ref [8]	
$7^{ m g}$	[APmim][LAc]	94	188	13	Ref [9]	

Table S3 Catalytic Performance of Catalysts in the Synthesis of Cyclic Carbonate with epoxides and CO₂.

TON (turnover number) = [moles of initial substrate × conversion]/ [moles of active sites]. TOF (turnover frequency) = [mmol (product)]/ [mmol (active sites) × (reaction time)]

^a Reaction conditions: ECH (20 mmol), catalyst (n_{Co3+}) =0.0424 mmol, 0.1 MPa of CO₂, 80 °C, 48 h. ^b Performed with a flow rate of 2 mL/min (1.98 mL/min scCO₂ and 0.02 mL/min propylene oxide/n-hexane 1:1; column: 4.5 mm ID × 150 mm). Column length 4.5 mm ID × 250 mm. ^c Reaction conditions: ECH (10 mmol), catalysts (30 µmol ionic sites), CO₂ pressure 10 bar, 90 °C, and 24 h. ^d Reaction conditions: catalyst (61.3 mg), epichlorohydrin (50 mmol), temperature (110 °C), CO₂ pressure (1.0 MPa), time (6.0 h), magnetic stirring rate (280 rpm). ^e Reaction conditions: epichlorohydrin (2 mmol), CO₂ pressure (0.1 MPa), the catalyst (40 mg), temperature (T = 60 °C), time (t = 72 h). ^f Reaction conditions: solvent free, Phenyl Glycidyl Ether (5 mmol), catalyst (0.95 mol % based on imidazolium), CO₂ (constant 1 bar), 140 °C, 14 h. ^g Reaction conditions: epichlorohydrin 5.0 mL, catalyst 0.5 mol%, 0.3 MPa, 80 °C, 14 h.

Table S4. Cycloaddition of epichlorohydrin with carbon dioxide catalyzed by PPh₂PStD-PCoVPP-1 catalyst used for different run times ^a

Entry		Co Loading	Conv.	Sele.
	Catalysts	(mmol/g) ^b	(%) ^c	(%) ^c
1	PPh ₂ PStD-PCoVPP-1 (Run 1)	0.581	93.05	>99
2	PPh ₂ PStD-PCoVPP-1 (Run 2)	0.535	87.81	>99
3	PPh ₂ PStD-PCoVPP-1 (Run 3)	0.517	85.61	>99
4	PPh ₂ PStD-PCoVPP-1 (Run 4)	0.506	85.07	>99

^a Reaction conditions: epichlorohydrin (20 mmol), catalyst (57.3 mg), 48 h, 80 °C, 1 atm CO₂; ^b Co (mmol)/catalyst (g), determined by ICP; ^c Determined by ¹H NMR.

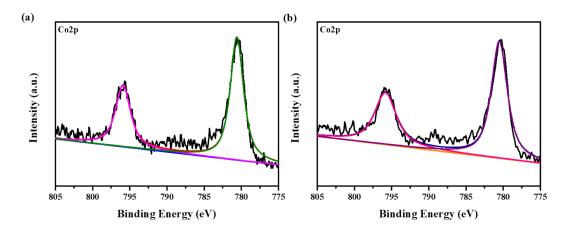


Figure S10 Co2p XPS spectra of fresh(a) and recovered(b) PPh₂PStD-PCoVPP-1.

Figure S11 The picture of fresh and recovered PPh₂PStD-PCoVPP-1.

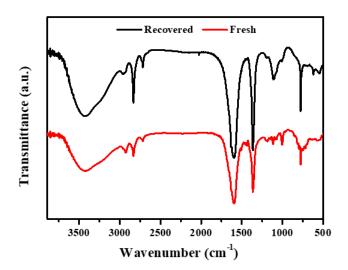
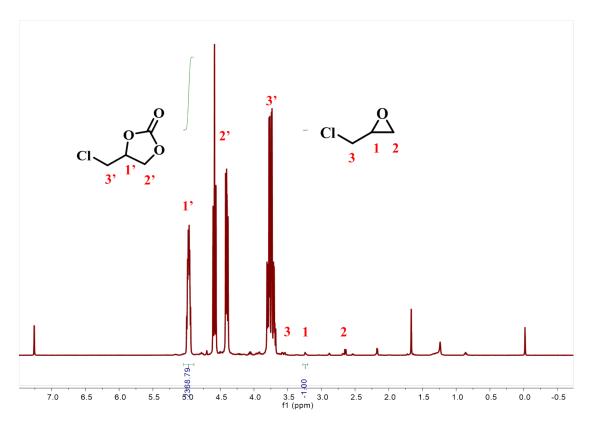
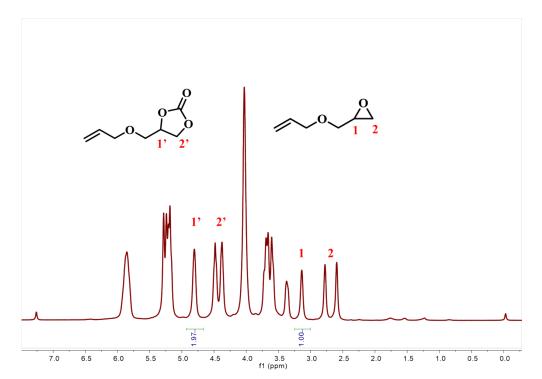
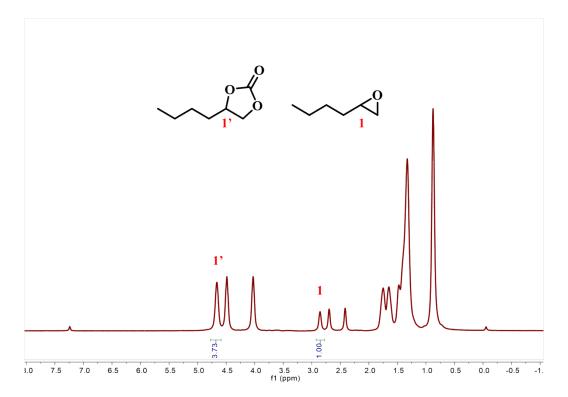
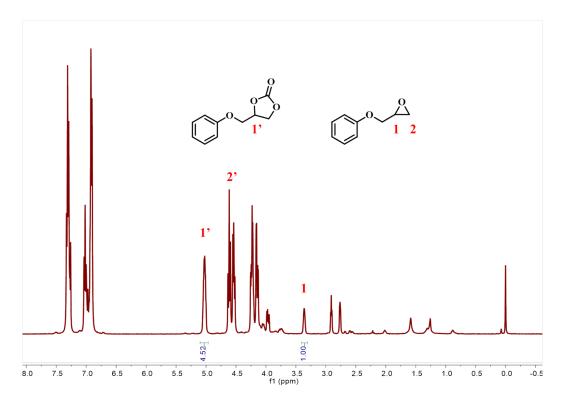
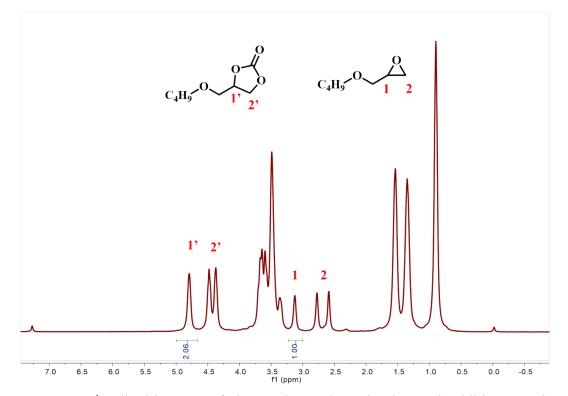
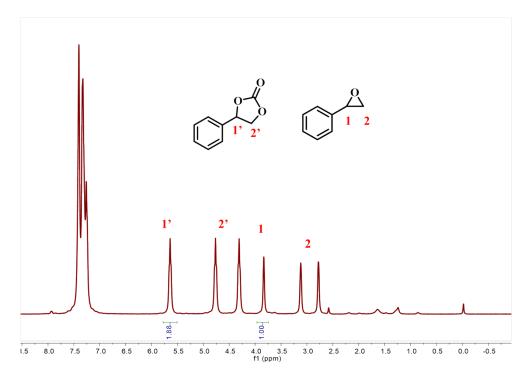


Figure S12 FT-IR spectra of fresh and recovered PPh₂PStD-PCoVPP-1.


Figure S13 1 H liquid NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with epichlorohydrin (ECH) as a substrate.


Figure S14 ¹H liquid NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with allyl glycidyl ether as a substrate.


Figure S15 ¹H liquid NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with 1,2-hexylene oxide as a substrate.

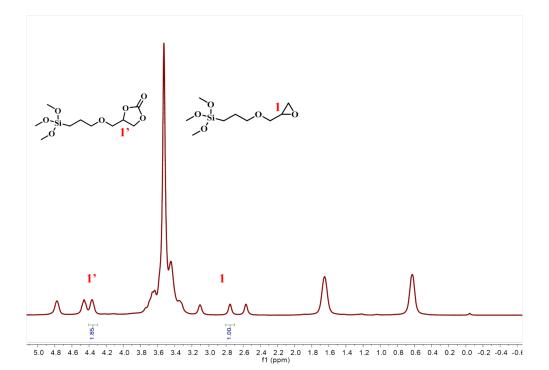

Figure S16 ¹H liquid NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with allyl glycidyl ether as a substrate.

Figure S17 ¹H liquid NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with butyl glycidyl ether as a substrate.

Figure S18 ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with styrene oxide as a substrate.

Figure S19 ¹H NMR of the crude products in the cycloaddition reaction catalyzed by the PPh₂PStD-PCoVPP-1 catalyst with 3-glycidoxypropyltrimethoxysilane as a substrate.

REFERENCES

- Z. F. Dai, Q. Sun, X. L. Liu, C. Q. Bian, Q. M. Wu, S. X. Pan, L. Wang, X. J. Meng, F. Deng, F. S. Xiao, *J. Catal.* 2016, **338**, 202–209.
- [2] A. S. Martinez, C. Hauzenberger, A. R. Sahoo, Z. Csendes, H. Hoffmann, K. Bica, ACS Sustainable Chem. Eng., 2018, 6, 13131–13139.
- [3] Y. L. Yang, Y. L. Guo, J. L. Yuan, H. B. Xie, C. T. Gao, T. X. Zhao, Q. Zheng, ACS Sustainable Chem. Eng., 2022, 10, 7990–8001.
- [4] Z. X. Yue, T. D. Hu, H. Y. Su, W. B. Zhao, Y. Li, H. Zhao, Y. L. Liu, Y. Liu, H. Zhang, L. H. Jiang, X. N. Tang, S. Y. Shan, Y. F. Zhi, *Fuel*, 2022, **326**, 125007.
- [5] G. J. Chen, Y. D. Zhang, K. Liu, X. Q. Liu, L. Wu, H. Zhong, X. J. Dang, M. M. Tong, Z. Y. Long, J. Mater. Chem. A., 2021, 9, 7556–7565.
- [6] J. Liang, Y. Q. Xie, Q. Wu, X. Y. Wang, T. T. Liu, H. F. Li, Y. B. Huang, R. Cao, *Inorg. Chem.*, 2018, 57, 2584–2593.
- [7] S. Yue, H. L. Qu, X. X. Song, S. L. Zang, G. C. Deng, *Catal. Sci. Technol.*, 2021, 11, 6999–7008.