Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Material

Comparison of Carbon Dots Prepared from Collagen Peptide Using

Conventional Hydrothermal and Microwave Methods

Chengzhi Xu¹, Jizhen Kang², Yanqiu Zhao², Lian Zhu¹, Juntao Zhang¹, Benmei Wei¹,

Haibo Wang^{1,*}

¹ School of Chemistry and Environmental Engineering, Wuhan Polytechnic University, Wuhan,

Hubei, China

² School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei, China

*To whom correspondence should be addressed: wanghaibo@whpu.edu.cn

1. Characterization of the Structure and Composition of Fish Scale Collagen Peptide

Ta	b	le	S1	. /	Amino	acid	compo	osition	of	fisł	ı scal	e col	lagen	peptie	de
----	---	----	----	------------	-------	------	-------	---------	----	------	--------	-------	-------	--------	----

Amino acid	Number of residues/1000 amino acid residues
Aspartic acid	43.01
Threonine	18.71
Serine	37.93
Glutamate	79.00
Proline	100.97
Glycine	326.39
Alanine	91.41
Cysteine	4.58
Valine	19.73
Methionine	7.73
Isoleucine	9.46
Leucine	24.20
Tyrosine	3.36
Phenylalanine	10.17
Lysine	5.59
Histidine	21.86
Arginine	58.67
Hydroxyproline	137.26

Figure S1. Gel permeation chromatography elution profile of fish scale collagen peptides

Figure S2. Circular dichroism chromatogram of fish scale collagen peptide

2. Single-factor analysis and orthogonal-experiment optimization reaction parameters for

CDs

Figure S3. The effect of NaOH concentration (A), hydrothermal temperature (B) and hydrothermal time (B) on the quantum yield of CDs-HT. The results were presented as mean ± standard deviation (n=3). The differences between means were evaluated by Duncan's multiplerange test, means that contain different letters are significantly different at P<0.05.</p>

No.	A (NaOH concentration)	B (Hydrothermal time)	C (Empty column)	D (Hydrothermal temperature)	Quantum yield (%)
1	0.01	1		180	4.43
2	0.01	2		190	3.21
3	0.01	3		200	1.15
4	0.03	1		200	5.94
5	0.03	2		180	1.83
6	0.03	3		190	9.21
7	0.05	1		190	3.04
8	0.05	2		200	8.38
9	0.05	3		180	4.35
K_1	8.80	13.42		10.62	
K_2	16.98	13.43		15.48	
<i>K</i> ₃	15.78	14.72		15.47	
k_1	2.93	4.47		3.54	
k_2	5.66	4.48		5.16	
<i>k</i> ₃	5.26	4.91		5.16	
R	8.18	1.29		4.86	

Table S2. The experimental design based on $L_9(3^4)$ orthogonal array and experimental results ofpreparation conditions for CDs-HT

K, Sum of quantum yield for the factors at each level; k, The mean values for the factors at each level; R, Kmax-Kmin.

Figure S4. The effect of NaOH concentration (A), microwave power (B) and microwave time (C) on the quantum yield of CDs-MW. The results were presented as mean ± standard deviation (n=3). The differences between means were evaluated by Duncan's multiple-range test, means that contain different letters are significantly different at P<0.05.</p>

Table S3. The experimental design based on $L_9(3^4)$ orthogonal array and experimental results ofpreparation conditions for CDs-MW

No.	A (NaOH concentration)	B (Microwave time)	C (Empty column)	D (Microwave power)	Quantum yield (%)
1	0.03	2.0		240	3.64
2	0.03	2.5		400	3.34
3	0.03	3.0		560	3.37
4	0.05	2.0		560	2.97
5	0.05	2.5		240	2.62
6	0.05	3.0		400	4.86
7	0.1	2.0		400	3.37
8	0.1	2.5		560	2.60
9	0.1	3.0		240	4.28
K_1	10.34	9.98		10.53	
K_2	10.46	8.55		11.57	
<i>K</i> ₃	10.24	12.51		8.94	
k_1	3.45	3.33		3.51	
k_2	3.49	2.85		3.86	
<i>k</i> ₃	3.41	4.17		2.98	
R	0.22	3.95		2.63	

K, Sum of quantum yield for the factors at each level; k, The mean values for the factors at each level; R, Kmax-Kmin.

3. Fluorescence stability of CDs

Figure S5. Effects of xeno-lamp irradiation (A) and ion intensity (B) on the fluorescence intensity of CDs

4. Characterization of Surface Properties of CDs

Figure S6. XPS full-scan survey spectra of CDs-HT, CDs-MW and FSP

Table S4. Peak parameters obtained by deconvolution of the XPS spectra
--

Sample	Peak	Position (eV)	Area	FWHM (eV)	Area (%)	Sample	Peak	Position (eV)	Area	FWHM (eV)	Area (%)
	1	284.8	158657.1	1.8	58.7		1	284.8	150530.5	1.8	51.9
	2	285.9	28665.5	1.0	10.6		2	285.9	45372.3	1.0	15.6
	3	286.5	11504.6	1.0	4.3	CDs-MW	3	286.5	13148.5	1.0	4.5
	4	287.7	71619.8	1.8	26.5		4	287.7	81014.5	1.7	27.9
CD ₂ UT	5	398.5	6559.8	1.3	7.4		5	398.5	9732.1	1.5	7.8
CDS-H1	6	399.6	48648.8	1.3	54.6		6	399.6	76048.4	1.3	60.6
	7	400.2	25676.2	1.3	28.8		7	400.2	26168.2	1.3	20.8
	8	401.3	8181.3	2.0	9.2		8	401.3	13626.1	2.0	10.9
	9	531.1	188352.7	1.8	85.4		9	531.1	199174.1	1.8	83.7
	10	532.5	32207.3	1.8	14.6		10	532.4	38673.3	1.8	16.3

Figure S7. FTIR spectra of CDs-HT and CDs-MW

Sample	Center	Area	Amplitude	Center	Width	Sample	Center	Area	Amplitude	Center	Width
	1652.1	83.8	0.918	1652.1	85.8		1654.7	75.6	0.917	1654.7	77.5
	1563.4	36.6	0.441	1563.4	77.9		1566.4	40.4	0.436	1566.4	87.2
CD- UT	1524.0	6.9	0.150	1524.0	43.6	CD- MW	1525.3	13.4	0.238	1525.3	52.7
CDS-III	1451.9	10.7	0.241	1451.9	41.8	CDs-MW	1450.0	11.3	0.251	1450.0	42.2
	1402.2	8.5	0.202	1402.2	39.5		1400.8	7.6	0.197	1400.8	36.5
	1381.8	0.7	0.039	1381.8	16.0		1382.7	0.3	0.024	1382.7	11.4

Table S5. Peak parameters obtained by deconvolution of the FTIR spectra (3800~2800cm⁻¹)

Table S6. Peak parameters obtained by deconvolution of the FTIR spectra (1800~1300cm⁻¹)

Sample	Center	Area	Amplitude	Center	Width	Sample	Center	Area	Amplitude	Center	Width
	3544.8	30.1	0.201	3544.8	141.1	CDs-MW	3550.5	13.1	0.096	3550.5	128.1
	3442.9	41.1	0.248	3442.9	155.8		3457.1	33.4	0.169	3457.1	185.4
CD- UT	3298.2	126.1	0.448	3298.2	264.5		3305.4	135.9	0.438	3305.4	291.6
CDS-HI	3066.8	14.0	0.129	3066.8	102.5		3063.6	13.5	0.120	3063.6	105.3
	2947.4	18.0	0.170	2947.4	99.4		2946.6	17.5	0.168	2946.6	97.9
	2864.6	2.6	0.049	2864.6	50.5		2865.2	2.7	0.049	2865.2	50.5