Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

# **Supporting Information**

Fluorometric detection of a chemical warfare agent mimic (DCP) using a simple hydroxybenzthiazole-diaminomaleonitrile based chemodosimeter

Manas kumar Das, <sup>a</sup> Tanushree Mishra, <sup>a</sup> Subhajit Guria, <sup>a</sup> Debojyoti Das, <sup>a</sup> Juheli Sadhukhan, <sup>a</sup> Sushmita Sarker, <sup>c</sup> Koushik Dutta, <sup>b</sup> Arghya Adhikary, <sup>c</sup> Dipankar Chattopadhyay, <sup>b</sup> Susanta Sekhar Adhikari, <sup>a</sup> \*

<sup>a</sup>Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700 009, West Bengal, India.

<sup>b</sup>Centre for Research in Nanoscience& Nanotechnology, (CRNN), University of Calcutta, Technology Campus, Sector-III, Block-JD 2, Salt Lake, Kolkata 700098, West Bengal, India.

<sup>c</sup>Center for Research in Nanoscience and Nanotechnology, Technology Campus, University of Calcutta, JD-2, Sector-III, Salt Lake, Kolkata-700106, West Bengal, India

\* To whom correspondence should be addressed.

E-mail address: adhikarisusanta@yahoo.com

## 1. General method of UV-Vis and fluorescence titration

Path length of the cells used for absorption and emission studies was 1 cm. For UV-Vis and fluorescence titrations, stock solutions of the ligands were prepared in acetonitrile solvent. An appropriate amount of the ligands were pipetted in the cuvette so that the final volume of the ligand is 20  $\mu$ M in buffer solution. Fluorescence measurements were performed using 5 nm x 5 nm slit width.

#### 2. Buffer solution preparation

Buffer solutions were prepared according to the literature procedure. All the buffer solutions that are used are shown below, and are freshly prepared prior to use. pH of the solutions was measured using a pH meter and adjusted with HCl or NaOH to the desired value.

| pH 2   | KCI-HCI Buffer                                                                  |
|--------|---------------------------------------------------------------------------------|
| pH 4   | K <sub>2</sub> HPO <sub>4</sub> -HCl Buffer                                     |
| pH 6   | KH <sub>2</sub> PO <sub>4</sub> -NaOH Buffer                                    |
| pH 7.4 | Na <sub>2</sub> HPO <sub>4</sub> - KH <sub>2</sub> PO <sub>4</sub> -NaCl Buffer |
| pH 8   | KH <sub>2</sub> PO <sub>4</sub> -NaOH Buffer                                    |
| pH 10  | Glycine-NaOH Buffer                                                             |
| pH 12  | Na <sub>2</sub> HPO <sub>4</sub> - KH <sub>2</sub> PO <sub>4</sub> Buffer       |
|        |                                                                                 |



Figure S1: <sup>1</sup>H-NMR (300 MHz) of compound BZ-CHO in DMSO-d<sub>6</sub>



Figure S2: ESI-MS of compound BZ-CHO



Figure S3: <sup>1</sup>H-NMR (500 MHz) of compound BZ-DAM in DMSO-d<sub>6</sub>



Figure S4: <sup>13</sup>C-NMR (100 MHz) of compound BZ-DAM in DMSO-d<sub>6</sub>



Figure S5: ESI-MS of compound BZ-DAM

| Table S1: A | comparison | table for | DCP | probes |
|-------------|------------|-----------|-----|--------|
|             |            |           |     |        |

| Structure of fluorescence probe                           | Nature of<br>Fluorescence                    | Journal                                                 | Solvent<br>system                   | Mechanism                           | LOD               |
|-----------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------|
| $O_2N$ $NO_2$ $H$ $CN$ $CN$ $CN$ $CN$ $CN$ $CN$ $CN$ $CN$ | No<br>fluorescence,<br>only colour<br>change | ACS Omega<br><b>2022</b> , 7,<br>5595–5604              | CH₃CN                               | Deprotonation,<br>Quinoid formation | 25-<br>200<br>ppm |
|                                                           | Fluorescence<br>enhancement<br>And ICT       | OBC, <b>2022</b> ,<br>20, 4803-<br>4814                 | THF:H <sub>2</sub> O<br>(9:1)       | Hydrolysis                          | 35.6<br>nM        |
| Me <sub>2</sub> N NMe <sub>2</sub>                        | Fluorescence<br>quenching                    | J. Mater.<br>Chem. C,<br><b>2022</b> , 10,<br>5458–5465 | CH <sub>3</sub> CN-H <sub>2</sub> O | Phosphamide<br>formation            | 0.9<br>ppb        |

| O CHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fluorescence<br>turns on and<br>enhancement    | ACS Appl.<br>Bio. Mater.<br><b>2021</b> , 4,<br>7007-7015         | DMSO                                         | Cyclization                              | 6.9<br>nM |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|------------------------------------------|-----------|
| $ \begin{array}{c}  Et_2 N & O \\  \hline  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluorescence<br>turns on and<br>enhancement    | J. Org.<br>Chem.<br><b>2021</b> , 86,<br>14663–146<br>71          | H <sub>2</sub> O                             | Phosphamide<br>formation                 | 35<br>ppb |
| $ \begin{array}{c} H \\ N \\ R_2 \\ N \\ R_1 \\ F \\ F \\ F \\ R_1 \\ F \\ F \\ R_1 \\ F $ | Fluorescence<br>switches on and<br>enhancement | Dyes and<br>pigments,<br><b>2021</b> , 189,<br>109257             | CH₃CN                                        | Phosphamide<br>formation,<br>PET process | 35 nM     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluorescence<br>switches on and<br>enhancement | Spectrochi<br>mica Acta<br>Part A<br><b>2021</b> , 263,<br>120206 | CH <sub>3</sub> CN:H <sub>2</sub> O(<br>2:8) | Phosphorylation,                         | 68 nM     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Enhancement of fluorescence                    | New J.<br>Chem.,<br><b>2020</b> ,44,<br>10713-<br>10718           | DMF                                          | Phosphamide<br>formation                 | 5.5<br>nM |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Fluorescence<br>enhancement                    | RSC Adv.,<br><b>2020</b> , 10,<br>25848–<br>25855                 | THF:H <sub>2</sub> O<br>(3:7)                | Phosphorylation,<br>ICT                  | 106<br>mM |

| HO                              | Fluorescence<br>enhancement                            | Sensors &<br>Actuators:<br>B. Chemical<br><b>2020</b> , 319,<br>128282      | CH₃CN                                                                                   | Phosphorylation,<br>ESIPT     | 0.186<br>μM. |
|---------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|--------------|
| O N O<br>HN<br>H <sub>2</sub> N | Fluorescence<br>enhancement                            | Anal.<br>Chem.<br><b>2019</b> , 91,<br>12070–120<br>76                      | CHCl3                                                                                   | Phosphamide<br>formation      | 88 nM        |
| OH<br>N<br>OH<br>OH             | Fluorescence<br>enhancement,<br>Inhibition<br>of PET   | Dyes and<br>Pigments<br><b>2019</b> , 170,<br>107585                        | CH <sub>3</sub> CN-H <sub>2</sub> O<br>(4:6 v/v,<br>10mM<br>HEPES<br>buffer,<br>pH 7.4) | Phosphamide<br>formation      | 0.23<br>μΜ   |
|                                 | Ratiometric<br>emission<br>enhancement,<br>ICT process | New J.<br>Chem.,<br><b>2019</b> , 43,<br>8627-8633                          | CHCl₃                                                                                   | Phosphamide<br>formation, ICT | 93.8<br>nM   |
|                                 | Quenching of<br>fluorescence                           | Analytical<br>Chemistry <b>2</b><br><b>019</b> , 91, 17,<br>10927-<br>10931 | Water                                                                                   | Phosphamide<br>formation,     | 0.15<br>ppb  |
|                                 | Quenching of fluorescence                              | New J.<br>Chem.,<br><b>2018</b> ,42,<br>8756-8764                           | MeOH                                                                                    | Phosphorylation               | 6.88<br>μΜ   |
| R                               | Fluorescence on<br>and<br>enhancement                  | Analyst,<br><b>2018</b> ,143,<br>4171-4179                                  | $CH_3CN-H_2O$<br>(10 mM<br>HEPES<br>buffer, 7:3<br>V/V, pH 7.4)                         | Phosphorylation               | 0.20<br>μM   |



|                                                                           | Fluorescence<br>colour change<br>and ICT<br>enhancement | New J.<br>Chem.,<br><b>2017</b> ,41,<br>12562-<br>1256 | THF/H <sub>2</sub> O<br>(4/1, v/v)           | Phosphamide<br>formation                     | 84.5<br>nM |
|---------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|----------------------------------------------|----------------------------------------------|------------|
| Present work<br>CH <sub>3</sub><br>H<br>NC<br>NC<br>NC<br>NH <sub>2</sub> | Fluorescence<br>colour change<br>via ESIPT<br>process   |                                                        | CH <sub>3</sub> CN-H <sub>2</sub> O<br>(1:1) | Phosphorylation<br>followed by<br>hydrolysis | 0.43<br>μΜ |



Figure S6. Absorption spectrum of BZ-DAM (20  $\mu$ M) in solvents of varying polarity, in absence and in presence of 2eq of Triethylamine.



**Figure S7**. Normalized fluorescence spectrum of BZ-DAM (20  $\mu$ M) in solvents of varying polarity, in absence and in presence of 2eq of Triethylamine.



**Figure S8:** Fluorescence emission spectra of BZ-DAM (20  $\mu$ M) in acetonitrile/water medium in presence of 4 eq. of Triehylamine.

| Species    | $\tau_1$ (ns) | <b>B</b> <sub>1</sub> | $\tau_2$ (ns) | B <sub>2</sub> | $\tau_3$ (ns) | B <sub>3</sub> | $\chi^2$ | $\tau_{avg}$ |
|------------|---------------|-----------------------|---------------|----------------|---------------|----------------|----------|--------------|
|            |               |                       |               |                |               |                |          |              |
|            |               |                       |               |                |               |                |          |              |
| L @540     | 1.5           | 0.07                  | 5.34          | 0.42           | 0.18          | 0.51           | 1.04     | 0.33         |
| L @600     | 0.16          | 0.83                  | 0.38          | 0.17           | -             | -              | 0.98     | 0.17         |
| L @625     | -             | -                     | -             | -              | -             | -              | -        | -            |
| L+DCP @540 | 1.88          | 0.08                  | 3.75          | 0.92           | -             | -              | 1.03     | 3.46         |
| L+DCP @600 | 0.23          | 0.11                  | 3.58          | 0.89           | -             | -              | 1.07     | 1.40         |
| L+DCP @625 | 0.87          | 0.04                  | 3.67          | 0.78           | 0.18          | 0.17           | 1.12     | 0.83         |

**Table S2**: Summary of the lifetime of BZ-DAM in absence and in presence of DCP in (1:1) ACN:Water medium.

Table S3: Shift of proton in <sup>1</sup>H NMR titration of BZ-DAM in presence of DCP in DMSO-d<sub>6</sub>

| Proton | Lig       | 0.5eq     | 1eq       | 1.5eq     | 2eq       |
|--------|-----------|-----------|-----------|-----------|-----------|
|        |           |           |           |           |           |
| а      | 12.73     | -         | -         | -         | -         |
| b      | -         | 10.34     | 10.30     | 10.29     | 10.27     |
| С      | 8.66      | 8.65      | 8.62      | 8.63      | 8.59      |
| d      | 8.2-8.18  | 8.21-8.18 | 8.1715    | 8.17-8.14 | 8.15-8.12 |
| е      | 8.15-8.14 | 8.15      | 8.12-8.11 | 8.12-8.11 | 8.08      |
| f      | 8.12-8.09 | 8.11-8.09 | 8.08-8.06 | 8.09-8.06 | 8.06-8.04 |
| g      | 8.06      | -         | -         | -         | -         |
| h      | 7.93-7.92 | 7.92-7.93 | 7.88-7.87 | 7.89      | 7.84      |
| i      | 7.62-7.57 | 7.62-7.57 | 7.60-7.55 | 7.61-7.56 | 7.59-7.54 |
| J      | 7.54-7.49 | 7.53-7.48 | 7.52-7.46 | 7.52-7.47 | 7.51-7.45 |
| k      | -         | -         | 7.70-7.69 | 7.72      | 7.69-7.68 |
| l      | 2.38      | 2.38      | 2.35      | 2.35      | 2.33      |



**Figure S9:** Geometry optimised structure of (a) BZ-DAM and (b) BZ-CHOat B3LYP/6-31G(d,p) level of theory. Mulliken charge density of the atoms involved in ESIPT process is written over the respective atom.

**Table S4:** Summary of the TDDFT electron transitions of keto and enol form of BZ-DAM and BZ-CHO at B3LYP/6-31G (d,p) level of theory.

| Compound |         | Transitions         | ΔΕ (eV)     | Normalized  | Wavelength   | <b>f</b> osc | Experimental |
|----------|---------|---------------------|-------------|-------------|--------------|--------------|--------------|
|          |         | corresponding to    | between the | Coefficient | (nm)         |              | wavelength   |
|          |         | First excited state | orbitals    | (x)         | calculations |              | (nm)         |
|          | Enol-GS | HOMO-1→LUMO         | 3.71        | 0.29475     | 414.57 nm    | 0.4825       | 400          |
|          |         | HOMO→LUMO           | 3.37        | 0.61922     |              |              |              |
|          |         | HOMO→LUMO+1         | 3.94        | -0.15494    |              |              |              |
| BZ-DAM   |         |                     |             |             |              |              |              |
|          | Enol-EX | HOMO-1→LUMO         | 3.50        | -0.15323    | 497.63 nm    | 0.8678       | 450          |
|          |         | HOMO→LUMO           | 2.86        | 0.67710     |              |              |              |
|          |         | HOMO→LUMO+1         | 3.54        | -0.11966    |              |              |              |
|          |         |                     |             |             |              |              |              |
|          | Keto-EX | HOMO→LUMO           | 2.49        | -0.69999    | 613.02 nm    | 0.7528       | 595          |
|          |         |                     | 2.04        | 0.00500     |              | 0.0044       |              |
|          | Keto-GS | HOMO→LUMO           | 2.94        | 0.69588     | 494.08 nm    | 0.6041       |              |
|          |         |                     |             |             |              |              |              |
|          | Enol-GS |                     | 4.00        | 0 69195     | 358 36 nm    | 0 4 4 0 1    | 366          |
|          |         |                     | 4.00        | 0.05155     | 330.30 mm    | 0.4401       | 500          |
| BZ-CHO   | Enol-EX | HOMO→LUMO           | 3.56        | 0.70048     | 415.83 nm    | 0.7354       | 458          |
|          |         |                     |             |             |              |              |              |
|          | Keto-EX | HOMO→LUMO           | 2.96        | 0.70509     | 512.95 nm    | 0.5819       | 540          |
|          |         |                     |             |             |              |              |              |
|          | Keto-GS | HOMO→LUMO           | 3.33        | 0.70378     | 430.25 nm    | 0.4854       |              |
|          |         |                     |             |             |              |              |              |



Figure S10: ESI-MS of compound BZ-DAM in presence of DCP



Figure S11: Comparison of Fluorescence emission spectra between Compound of BZ-CHO and BZ-DAM ( $20 \ \mu$ M) in (1:1) acetonitrile/water medium

| Conc    | 0       | 10      | 20      | 30      | 40      | 50      | 60      | 70      | 80      | 90      | 100     |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| (ug/ml) |         |         |         |         |         |         |         |         |         |         |         |
| Abs 1   | 1.1878  | 0.6844  | 0.5056  | 0.6876  | 0.5616  | 0.586   | 0.3354  | 0.2536  | 0.344   | 0.4894  | 0.3284  |
| Abs 2   | 0.8768  | 0.6718  | 0.5754  | 0.4832  | 0.4472  | 0.3724  | 0.485   | 0.2944  | 0.4628  | 0.4266  | 0.4308  |
| Abs 3   | 0.4854  | 0.9302  | 0.5494  | 0.5974  | 0.4946  | 0.3928  | 0.3654  | 0.4762  | 0.4336  | 0.4162  | 0.341   |
| Mean    | 0.85    | 0.76213 | 0.54347 | 0.5894  | 0.50113 | 0.4504  | 0.39527 | 0.3414  | 0.41347 | 0.44407 | 0.36673 |
| SD      | 0.35197 | 0.14569 | 0.03528 | 0.10243 | 0.05748 | 0.11788 | 0.07915 | 0.11851 | 0.06191 | 0.0396  | 0.05584 |









Figure S13: Change of emission intensity of BZ-DAM with DCP in presence of various analytes at 540 nm, in CH<sub>3</sub>CN-H<sub>2</sub>O (1:1) solution ( $\lambda_{ex}$  = 365 nm) at 25 °C.



Figure S14: Change of emission intensity of BZ-DAM with DCP in presence of cations at 540 nm, in CH<sub>3</sub>CN-H<sub>2</sub>O (1:1) solution ( $\lambda_{ex}$  = 365 nm) at 25 °C.

In this mechanistic path, the phenol group in BZ-DAM is first phosphoesterified by DCP, which assists the formation of a significant 6-membered cyclic intermediate by the nucleophilic attack of a water molecule at the aldimine carbon atom and then followed by stepwise dephosphorylation to assist the complete hydrolysis of aldimine of BZ-DAM. The mechanism is supported by the mass spectra of the compound in presence of DCP.



Figure S15: Plausible mechanism of hydrolysis of BZ-DAM (Aldemine) in presence of DCP in  $CH_3CN-H_2O$ (1:1) solution at 25 °C.

Here, initially both the ESIPT and ICT mechanisms are operative in the BZ-DAM. Thus, we can see two fluorescence bands: one at ~540 nm at another at ~600 nm. The red-shifted band (~ 600 nm) can be ascribed to the ESIPT-assisted ICT which can facilitate the delocalization of electrons on the DAM group.



Figure S16: Changes in fluorescence intensity BZ-DAM with time in presence of DCP.



Figure S17: Changes in fluorescence intensity BZ-DAM of in presence of DCP at different concentration.

## **Determination of Detection Limit:**

The detection limit (DL) of BZ-DAMfor DCP was determined from the following equation<sup>1</sup>:

 $DL = K^* Sb1/S$ 

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope of the calibration curve.

From the graph we get slope = 7.3991, and Sb1 value is 1.068699.

Thus, using the formula, we get the Detection Limit = 0.433  $\mu$ M i.e., BZ-DAM can detect DCP in this minimum concentration.



Figure S18: Linear fit plot of LOD calculation of BZ-DAM with DCP.



Figure S19: Mechanistic path of ESIPT assisted ICT process.

# **References:**

Zhu, M.; Yuan, M.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Liu, H.; Li, Y.; Wang, S.; Zhu, D. Org.Lett.
 2008, 10, 1481-1484.