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1. General method of UV-Vis and fluorescence titration

Path length of the cells used for absorption and emission studies was 1 cm. For UV-Vis and fluorescence 

titrations, stock solutions of the ligands were prepared in acetonitrile solvent. An appropriate amount of 

the ligands were pipetted in the cuvette so that the final volume of the ligand is 20 µM in buffer solution. 

Fluorescence measurements were performed using 5 nm x 5 nm slit width.

2. Buffer solution preparation

Buffer solutions were prepared according to the literature procedure. All the buffer solutions that are 

used are shown below, and are freshly prepared prior to use. pH of the solutions was measured using a 

pH meter and adjusted with HCl or NaOH to the desired value.

pH 2 KCl-HCl Buffer
pH 4 K2HPO4-HCl Buffer
pH 6 KH2PO4-NaOH Buffer
pH 7.4 Na2HPO4- KH2PO4-NaCl Buffer
pH 8 KH2PO4-NaOH Buffer 
pH 10 Glycine-NaOH Buffer
pH 12 Na2HPO4- KH2PO4Buffer
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Figure S1: 1H-NMR (300 MHz) of compound BZ-CHO in DMSO-d6

Figure S2: ESI-MS of compound BZ-CHO



Figure S3: 1H-NMR (500 MHz) of compound BZ-DAM in DMSO-d6

Figure S4: 13C-NMR (100 MHz) of compound BZ-DAM in DMSO-d6



Figure S5: ESI-MS of compound BZ-DAM
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Figure S6. Absorption spectrum of BZ-DAM (20 μM) in solvents of varying polarity, in absence and in 
presence of 2eq of Triethylamine.



Figure S7. Normalized fluorescence spectrum of BZ-DAM (20 μM) in solvents of varying polarity, in 
absence and in presence of 2eq of Triethylamine.

Figure S8:  Fluorescence emission spectra of BZ-DAM (20 μM) in acetonitrile/water medium in presence 
of 4 eq. of Triehylamine.



Table S2: Summary of the lifetime of BZ-DAM in absence and in presence of DCP in (1:1) ACN:Water 
medium.

Species τ1 (ns) B1 τ2 (ns) B2 τ3 (ns) B3 χ2 τavg

L @540 1.5 0.07 5.34 0.42 0.18 0.51 1.04 0.33

L @600 0.16 0.83 0.38 0.17 - - 0.98 0.17

L @625 - - - - - - - -

L+DCP @540 1.88 0.08 3.75 0.92 - - 1.03 3.46

L+DCP @600 0.23 0.11 3.58 0.89 - - 1.07 1.40

L+DCP @625 0.87 0.04 3.67 0.78 0.18 0.17 1.12 0.83

Table S3: Shift of proton in 1H NMR titration of BZ-DAM in presence of DCP in DMSO-d6

Proton Lig 0.5eq 1eq 1.5eq 2eq

a 12.73 - - - -
b - 10.34 10.30 10.29 10.27
c 8.66 8.65 8.62 8.63 8.59
d 8.2-8.18 8.21-8.18 8.17-.15 8.17-8.14 8.15-8.12
e 8.15-8.14 8.15 8.12-8.11 8.12-8.11 8.08
f 8.12-8.09 8.11-8.09 8.08-8.06 8.09-8.06 8.06-8.04
g 8.06 - - - -
h 7.93-7.92 7.92-7.93 7.88-7.87 7.89 7.84
i 7.62-7.57 7.62-7.57 7.60-7.55 7.61-7.56 7.59-7.54
J 7.54-7.49 7.53-7.48 7.52-7.46 7.52-7.47 7.51-7.45
k - - 7.70-7.69 7.72 7.69-7.68
l 2.38 2.38 2.35 2.35 2.33



Figure S9: Geometry optimised structure of (a) BZ-DAM and (b) BZ-CHOat B3LYP/6-31G(d,p) level of 
theory. Mulliken charge density of the atoms involved in ESIPT process is written over the respective atom.

Table S4: Summary of the TDDFT electron transitions of keto and enol form of BZ-DAM and BZ-CHO at 

B3LYP/6-31G (d,p) level of theory.

Compound Transitions 
corresponding to 
First excited state

ΔE (eV)
between the 

orbitals 

Normalized 
Coefficient 

(x)

Wavelength 
(nm)

From TDDFT 
calculations

fosc Experimental 
wavelength

(nm)

Enol-GS HOMO-1→LUMO
HOMO→LUMO

HOMO→LUMO+1

3.71
3.37
3.94

0.29475
0.61922
-0.15494

414.57 nm 0.4825 400

Enol-EX HOMO-1→LUMO
HOMO→LUMO

HOMO→LUMO+1

3.50
2.86
3.54

-0.15323
0.67710
-0.11966

497.63 nm 0.8678 450

Keto-EX HOMO→LUMO 2.49 -0.69999 613.02 nm 0.7528 595

BZ-DAM

Keto-GS HOMO→LUMO 2.94 0.69588 494.08 nm 0.6041 ------

Enol-GS HOMO→LUMO 4.00 0.69195 358.36 nm 0.4401 366

Enol-EX HOMO→LUMO 3.56 0.70048 415.83 nm 0.7354 458

Keto-EX HOMO→LUMO 2.96 0.70509 512.95 nm 0.5819 540

BZ-CHO

Keto-GS HOMO→LUMO 3.33 0.70378 430.25 nm 0.4854 ------



Figure S10: ESI-MS of compound BZ-DAM in presence of DCP

Figure S11: Comparison of Fluorescence emission spectra between Compound of BZ-CHO and BZ-DAM 
(20 μM) in (1:1) acetonitrile/water medium



Table S5: MTT assay data

Conc 
(ug/ml)

0 10 20 30 40 50 60 70 80 90 100

Abs 1 1.1878 0.6844 0.5056 0.6876 0.5616 0.586 0.3354 0.2536 0.344 0.4894 0.3284

Abs 2 0.8768 0.6718 0.5754 0.4832 0.4472 0.3724 0.485 0.2944 0.4628 0.4266 0.4308

Abs 3 0.4854 0.9302 0.5494 0.5974 0.4946 0.3928 0.3654 0.4762 0.4336 0.4162 0.341

Mean 0.85 0.76213 0.54347 0.5894 0.50113 0.4504 0.39527 0.3414 0.41347 0.44407 0.36673

SD 0.35197 0.14569 0.03528 0.10243 0.05748 0.11788 0.07915 0.11851 0.06191 0.0396 0.05584

Figure S12: MTT assay bar diagram.
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Figure S13: Change of emission intensity of BZ-DAM with DCP in presence of various analytes at 540 nm, 
in CH3CN-H2O (1:1) solution (λex = 365 nm) at 25 ◦C.
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Figure S14: Change of emission intensity of BZ-DAM with DCP in presence of cations at 540 nm, in 
CH3CN-H2O (1:1) solution (λex = 365 nm) at 25 ◦C.

In this mechanistic path, the phenol group in BZ-DAM is first phosphoesterified by DCP, which assists the 

formation of a significant 6-membered cyclic intermediate by the nucleophilic attack of a water molecule 

at the aldimine carbon atom and then followed by stepwise dephosphorylation to assist the complete 

hydrolysis of aldimine of BZ-DAM. The mechanism is supported by the mass spectra of the compound in 

presence of DCP.

Figure S15: Plausible mechanism of hydrolysis of BZ-DAM (Aldemine) in presence of DCP in CH3CN-H2O 
(1:1) solution at 25 ◦C.

Here, initially both the ESIPT and ICT mechanisms are operative in the BZ-DAM. Thus, we can see two 

fluorescence bands: one at ~540 nm at another at ~600 nm. The red-shifted band (~ 600 nm) can be 

ascribed to the ESIPT-assisted ICT which can facilitate the delocalization of electrons on the DAM group.
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Figure S16: Changes in fluorescence intensity BZ-DAM with time in presence of DCP.
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Figure S17: Changes in fluorescence intensity BZ-DAM of in presence of DCP at different concentration.

Determination of Detection Limit:

The detection limit (DL) of BZ-DAMfor DCP was determined from the following equation1:

DL = K* Sb1/S 

Where K = 2 or 3 (we take 3 in this case); Sb1 is the standard deviation of the blank solution; S is the slope 

of the calibration curve.

From the graph we get slope = 7.3991, and Sb1 value is 1.068699.

Thus, using the formula, we get the Detection Limit = 0.433 µM i.e., BZ-DAM can detect DCP in this 

minimum concentration.
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939.48691

Pearson's r 0.99119
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Value Standard Err
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Figure S18: Linear fit plot ofLOD calculation of BZ-DAM with DCP.

Figure S19: Mechanistic path of ESIPT assisted ICT process.
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