Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

for

Synthesis, coordination behavior, and catalytic properties of dppf congeners with an inserted carbonyl moiety

Petr Vosáhlo, Ivana Císařová, Petr Štěpnička*

Contents

X-ray Crystallography	S-2
Copies of the NMR Spectra	S-10
References	S-54

X-ray Crystallography

The crystal structure of 15

Compound **15** crystallizes with the symmetry of the orthorhombic space group *Pbca* with one molecule per the asymmetric unit (Figure S1). The molecule contains symmetrically coordinated diimine ligand (Pd-N1 = 2.161(1), Pd-N1 = 2.155(1) Å), which forms a planar chelate ring (atoms Pd, N1, N2, C1, and C2 are coplanar within ca. 0.03 Å). The in-ring distances are as follows: N1-C1 1.277(2) Å, N2-C2 1.488(2) Å, and C1-C2 1.469(2) Å). Similar parameters were determined for $[Pd\{\eta^2-(E)-CH(CN)=CH(CN)\}N^N)]^1$ and $[Pd(\eta^2-MeO_2CC\equiv CCO_2Me)(N^N)]^2$ (N^N = *N*,*N*'-di-*t*-butylethanedialdiimine). The η^2 -*N*-methylmaleimide (mi) is coordinated in side-on fashion with Pd-C41 = 2.067(1) Å, and Pd-C42 = 2.068(1) Å, essentially planar (the eight atoms are coplanar within 0.02 Å) and oriented nearly perpendicularly to the {Pd, N1, N2} plane (dihedral angle: 72.18(6)°). Such features are again similar to those determined for [Pd(η^2 -mi){fc(P(*t*-Bu)R)₂- $\kappa^2 P$,*P*'}] (fc = ferrocene-1,1'-diyl, R = Ph, 2-pyridyl).³

Figure S1. PLATON plot of the molecular structure of 15 showing 30% probability ellipsoids.

Figure S2. PLATON plot of the molecular structure of 3 showing 30% probability ellipsoids.

Figure S3. PLATON plot of the molecular structure of 9 showing 30% probability ellipsoids.

Figure S4. PLATON plot of the complex molecule in the structure of **11**·3CH₂Cl₂ showing 30% probability ellipsoids.

Figure S5. PLATON plot of the complex molecule in the structure of $12 \cdot \text{CHCl}_3$ showing 30% probability ellipsoids.

Figure S6. PLATON plot of the complex molecule in the structure of $12 \cdot 3C_2H_4Cl_2$ showing 30% probability ellipsoids.

Figure S7. PLATON plot of the complex molecule in the structure of **14a**·1.5Et₂O showing 30% probability ellipsoids.

Figure S8. PLATON plot of the molecular structure of $16 \cdot \text{CHCl}_3$ showing 30% probability ellipsoids.

Figure S9. PLATON plot of the molecular structure of **20** showing 30% probability ellipsoids.

Compound	3	9	$11.3CH_2Cl_2$
Formula	$C_{35}H_{40}FeOP_2$	$C_{35}H_{40}FeOP_2Se_2$	$C_{38}H_{34}Cl_8FeOP_2Pd$
Μ	594.46	752.38	1014.44
Crystal system	triclinic	monoclinic	triclinic
Space group	<i>P</i> –1 (no. 2)	<i>P</i> 2 ₁ (no. 4)	<i>P</i> –1 (no. 2)
<i>T</i> [K]	120(2)	120(2)	150(2)
a [Å]	6.0140(2)	10.3484(8)	10.6263(5)
<i>b</i> [Å]	11.4903(5)	13.291(1)	13.0647(6)
<i>c</i> [Å]	22.172(1)	11.8953(9)	16.3339(8)
α [°]	85.552(2)		110.403(2)
β [°]	84.954(1)	101.676(3)	104.240(2)
γ [°]	78.179(1)		98.716(2)
<i>V</i> [Å ³]	1491.1(1)	1602.3(2)	1988.5(2)
Ζ	2	2	2
μ(Mo Kα) [mm ⁻¹]	0.640	2.870	1.467
Diffrns collected	62932	41498	55604
Independent diffrns	6841	7372	9147
Observed ^a diffrns	6135	7080	8196
R_{int^b} [%]	3.25	3.43	2.89
No. of parameters	352	370	460
<i>R^b</i> obsd diffrns [%]	2.91	1.92	2.49
<i>R, wR^b</i> all data [%]	3.34, 7.61	2.14, 4.30	2.99, 6.13
Δρ [e Å-3]	0.599, -0.243	0.225, -0.340	0.811, -0.817
CCDC deposition no.	2177221	2177222	2177223

Table S2. Selected crystallographic data and structure refinement parameters.^a

^{*a*} Diffractions with $I > 2\sigma(I)$. ^{*b*} Definitions: $R_{int} = \Sigma |F_o^2 - F_o^2(\text{mean})| / \Sigma F_o^2$, where $F_o^2(\text{mean})$ is the average intensity of symmetry-equivalent diffractions. $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, $wR = [\Sigma \{w(F_o^2 - F_c^2)^2\} / \Sigma w(F_o^2)^2]^{1/2}$.

Compound	12 ·CHCl ₃	$13 \cdot 3C_2H_4Cl_2$	14a •1.5Et ₂ 0
Formula	$C_{36}H_{41}Cl_5FeOP_2Pd$	$C_{37}H_{44}Cl_4FeOP_2Pd$	$C_{41}H_{67}Cl_2FeO_{2.5}P_2Pd$
Μ	891.13	870.71	895.03
Crystal system	triclinic	triclinic	monoclinic
Space group	<i>P</i> –1 (no. 2)	<i>P</i> –1 (no. 2)	<i>P</i> 2 ₁ /c (no. 14)
<i>T</i> [K]	120(2)	120(2)	120(2)
<i>a</i> [Å]	10.4175(6)	10.3654(6)	11.7264(5)
<i>b</i> [Å]	14.4351(7)	11.5653(7)	19.7632(8)
<i>c</i> [Å]	14.8759(8)	16.703(1)	17.7941(8)
α [°]	62.941(2)	99.203(2)	
β [°]	83.906(2)	94.117(2)	98.506(2)
γ [°]	82.033(2)	113.043(2)	
<i>V</i> [Å ³]	1970.6(2)	1798.8(2)	4078.4(3)
Ζ	2	2	4
μ(Mo Kα) [mm ⁻¹]	1.272	1.319	1.042
Diffrns collected	38683	40823	60155
Independent diffrns	9067	8278	9305
Observed ^a diffrns	8449	7645	8625
$R_{ m int}^{b}$ [%]	2.02	2.46	2.30
No. of parameters	379	419	434
<i>R^b</i> obsd diffrns [%]	2.01	2.17	3.84
<i>R, wR^b</i> all data [%]	2.23, 5.22	2.49, 5.26	4.20, 8.23
Δρ [e Å-3]	0.398, -0.602	0.637, -0.787	0.727, -0.821
CCDC deposition no.	2177224	2177225	2177226

Table S2 continued

Compound	15	16 •CHCl ₃	20
Formula	$C_{15}H_{25}N_3O_2Pd$	$C_{41}H_{34}Cl_3FeNO_3P_2Pd$	C ₃₉ H ₃₃ FeNO ₂ P ₂ Pd
М	385.78	919.23	771.85
Crystal system	orthorhombic	triclinic	monoclinic
Space group	<i>P</i> bca (no. 61)	<i>P</i> -1 (no. 2)	<i>P</i> 2 ₁ /n (no. 14)
<i>T</i> [K]	120(2)	120(2)	120(2)
<i>a</i> [Å]	17.3887(4)	8.1762(3)	12.7157(3)
<i>b</i> [Å]	9.9535(3)	12.2017(4)	14.7205(4)
<i>c</i> [Å]	19.3374(5)	20.0739(6)	17.3222(4)
α [°]		81.262(1)	
β [°]		80.928(1)	103.817(1)
γ [°]		74.063(1)	
<i>V</i> [Å ³]	3346.9(2)	1889.1(1)	3148.6(1)
Ζ	8	2	4
μ(Mo Kα) [mm ⁻¹]	1.117	1.198	1.172
Diffrns collected	38345	30799	42761
Independent diffrns	4852	8654	7219
Observed ^a diffrns	4472	8088	6865
R_{int}^{b} [%]	2.17	2.11	2.07
No. of parameters	197	470	416
<i>R^b</i> obsd diffrns [%]	1.93	2.12	1.94
<i>R, wR^b</i> all data [%]	2.16, 4.70	2.40, 4.93	2.09, 4.82
Δρ [e Å-3]	0.548, -0.485	0.434, -0.433	0.763, -0.389
CCDC deposition no.	2177227	2177228	2177229

Table S2 continued

Copies of the NMR spectra

(Note: solvent signals in the NMR spectra are denoted by an asterisk.)

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃) of 5.

Figure S11. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **5**.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S12. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **5**.

Figure S13. ¹H NMR spectrum (400 MHz, CDCl₃) of 1·BH₃.

Figure S14. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 1·BH₃.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S15. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of **1·BH**₃.

Figure S17. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **2·BH**₃.

Figure S18. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **2·BH**₃.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃) of **3·BH₂Cl**.

Figure S20. $^{\rm 13}C\{^{\rm 1}H\}$ NMR spectrum (101 MHz, CDCl₃) of $3{\cdot}BH_2Cl.$

Figure S21. ${}^{\rm 31}P\{{}^{\rm 1}H\}$ NMR spectrum (162 MHz, CDCl₃) of $3{\cdot}BH_2Cl.$

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃) of 4·BH₂Cl/4·BH₃.

Figure S23. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 4·BH₂Cl/4·BH₃.

Figure S24. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of 4·BH₂Cl/4·BH₃.

Figure S26. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃) of **1**.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S27. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of **1**.

Figure S28. ¹H NMR spectrum (400 MHz, CDCl₃) of 2.

Figure S29. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃) of 2.

Figure S30. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of 2.

Figure S31. ¹H NMR spectrum (400 MHz, CDCl₃) of 3.

Figure S32. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃) of 3.

Figure S33. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of 3.

Figure S35. $^{13}\text{C}\{^{1}\text{H}\}$ NMR spectrum (101 MHz, CDCl₃) of 4.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S36. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of 4.

Figure S37. ¹H NMR spectrum (400 MHz, CDCl₃) of 7.

Figure S38. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **7**.

Figure S39. ${\rm ^{31}P}\{{\rm ^{1}H}\}$ NMR spectrum (162 MHz, CDCl_3) of 7.

Figure S40. ¹H NMR spectrum (400 MHz, CDCl₃) of 8.

Figure S41. ${}^{13}C{}^{1}H$ NMR spectrum (101 MHz, CDCl₃) of 8.

Figure S42. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **8**.

Figure S44. ${}^{\rm 13}\text{C}\{{}^{\rm 1}\text{H}\}$ NMR spectrum (101 MHz, CDCl₃) of 9.

Figure S45. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of 9.

Figure S47. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **10**.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 f1 (ppm)

Figure S48. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of **10**.

Figure S49. ¹H NMR spectrum (400 MHz, CDCl₃) of **11**.

Figure S50. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **11**.

Figure S52. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **12**.

Figure S53. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **12**.

Figure S54. ¹H NMR spectrum (400 MHz, CDCl₃) of 13.

Figure S55. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **13**.

Figure S57. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **14a**.

Figure S58. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of **14a**.

Figure S59. ¹H NMR spectrum (400 MHz, CDCl₃) of mixture **14a** and **14b** measured 10 min after mixing.

Figure S60. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of mixture **14a** and **14b** measured 10 min after mixing.

Figure S61. ¹H NMR spectrum (400 MHz, CDCl₃) of 15.

Figure S62. $^{\rm 13}C\{^{\rm 1}H\}$ NMR spectrum (101 MHz, CDCl₃) of 15.

Figure S64. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **16**.

Figure S65. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃) of **16**.

Figure S66. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of **17**.

Figure S67. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 25 °C) of **17**.

Figure S68. ¹H NMR spectrum (400 MHz, CDCl₃, 50 °C) of **17**.

Figure S70. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **18**.

Figure S71. $^{31}P\{^{1}H\}$ NMR spectrum (162 MHz, CDCl₃) of 18.

Figure S72. ¹H NMR spectrum (400 MHz, CDCl₃, 25 °C) of 19.

Figure S73. ³¹P{¹H} NMR spectrum (162 MHz, CDCl₃, 25 °C) of **19**.

Figure S74. ¹H NMR spectrum (400 MHz, CDCl₃, 50 °C) of **19**.

Figure S75. ¹H NMR spectrum (400 MHz, CDCl₃) of 20.

Figure S76. ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of **20**.

Figure S77. ${}^{31}P{}^{1}H$ NMR spectrum (162 MHz, CDCl₃) of **20**.

References

- 1 J. J. M. de Pater, D. S. Tromp, D. M. Tooke, A. L. Spek, B.-J. Deelman, G. van Koten, C. J. Elsevier, *Organometallics*, 2005, **24**, 6411.
- P. Hauwert, R. Boerleider, S. Warsink, J. J. Weigand, C. J. Elsevier, *J. Am. Chem. Soc.*, 2010, 132, 16900.
- 3 K. Dong, R. Sang, X. Fang, R. Franke, A. Spannenberg, H. Neumann, R. Jackstell, M. Beller, *Angew. Chem. Int. Ed.*, 2017, **56**, 5267.