Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Photocatalytic hydrogen generation from methanol-water mixture in presence of $g-C_3N_4$ and graphene/g- C_3N_4

Wassila Touati^{*a*,‡,*}; Mohamed Karmaoui^{*a*,*e*}; Ahmed Bekka^{*a*}; Miroslava Filip Edelmannová^{*g*,‡}; Clarisse Furgeaud^{*b*,*c*}; Chakib Alaoui^{*a*}; Imene kadi Allah^{*a*}, Bruno Figueiredo^{*d*}; J.A. Labrincha^{*e*}; Raul Arenal^{*b*,*c*,*f*}; Kamila Koci^{*g*,*}; David Maria Tobaldi^{*h*}

^a Laboratoire de Chimie des Matériaux Inorganiques Et Applications, Faculté de Chimie, Université des Sciences Et de la Technologie d'Oran, El-Mnaouer, Algeria.
 ^b Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
 ^c Laboratorio de microscopias avanzadas (LMA), U. Zaragoza, C/ Mariano Esquillor s/n, 50018 Zaragoza, Spain.
 ^d Graphenest, Lugar da Estação, Edifício Vouga Park 3740-070, Paradela do Vouga, Portugal.
 ^e Department of Materials and Ceramic Engineering/CICECO–Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
 ^f ARAID Foundation, 50018 Zaragoza, Spain.
 ^g Institute of Environmental Technology, CEET,VŠB-Technical University of Ostrava, 17.listopadu 15/2172, Ostrava-Poruba, 70800, Czech Republic.
 ^h Nanotechnology Institute, CNR-Nanotec, Via Monteroni, Lecce 73100, Italy.

[‡] These authors equally contributed to the paper.

*Corresponding authors:

E-mail Addresses: wassila.touati@univ-usto.dz;

Kamila.Koci@vsb.cz

Figure S1. TG/DTA curves of urea and melamine pyrolysis in air (a, b respectively).

Material	H ₂ generation rate	AQY (%)	Reference
	(µmol.g ⁻¹)		
g-C ₃ N ₄	1105	3.457	[S1]
(dicyandiamide)			
g-C ₃ N ₄ (cyanamide)	106.9	0.1	[S2]
g-C ₃ N ₄	261.3	3.1	[\$3]
(MCA_DMSO)			
g-C ₃ N ₄ (Zinc-doped)	59.5 μ mol.h ⁻¹	3.2	[S4]
Exfoliated g-C ₃ N ₄	343.81	Not specified	[S5]
(melamine)			
g-C ₃ N ₄ (melamine)	1350	4.19	This study

Table S1: Comparison of typical g-C₃N₄ photocatalysts reported for hydrogen generation.

Figure S2 – Type-IV sorption isotherms of samples: a) **BM**; b) **BU**, c) **EM**. In the inset is shown the poresize distribution.

Supplementary Information

Sample	SSA_{BET} (m ² .g ⁻¹)
BM	7.4±0.1
BU	72.8 ± 0.3
EM	25.4 ± 0.9

TableS2: specific surface area (SSA) of the unmodified specimens.

Apparent quantum yields calculations:

The apparent quantum yield (AQY) of products can be described as hydrogen (2 electrons), as presented in Eq. (1):

$$AQY = \frac{Product \ yields \ (\mu mol/s) \times no \ of \ electrons}{Photon \ flux \ (\mu mol/s)} \times 100$$
(1)

where, yields of products and photon intensity both are in μ mol. Photon intensity can be calculated according to the Eq. (2).

$$Photon flux (\mu mol/s) = \frac{Intensity of light \times Wavelength}{Planck constant \times Photon density} \times \frac{Incident area}{Avogadro's constant}$$
(2)

The intensity of lamp is represented in W.m⁻², light wavelength is in meters (m) and reactor incident area is calculated in m². Planck's constant, photon density, and Avogadro's number are constants of Eq. 2 with values 6.63×10^{-34} J.s, 3×10^8 m.s⁻¹ and 6.023×10^{23} mol⁻¹, respectively.

Parameters

Light source	8 W Hg lamp	
Wavelength	254 nm	$254\times 10^{\text{-9}}\ m$
Intensity of lamp	1.213 mW.cm ⁻²	$12.13 \text{ Wm}^{-2}(\text{J.s}^{-1}.\text{m}^{-2})$
Incident area	190 cm^2	$19 \times 10^{-3} \text{ m}^{-2}$
Product rate (after 4 h) for BM	1352 μ mol/g _{cat}	$9.39\times10^{\text{-3}}\ \mu\text{mol.s}^{\text{-1}}$
Apparent quantum yield for BM	4.19 %	
Product rate (after 4 h) for BU	1321 μ mol/g _{cat}	$9.17\times10^{3}\ \mu\text{mol.s}^{1}$
Apparent quantum yield for BU	4.09 %	
Product rate (after 4 h) for EM	1263 μ mol/g _{cat}	$8.77\times10^{3}\ \mu\text{mol.s}^{1}$
Apparent quantum yield for EM	3.91 %	
Product rate (after 4 h) for P25	1052 μ mol/g _{cat}	$7.31\times10^{3}\ \mu\text{mol.s}^{1}$
Apparent quantum yield for P25	3.26 %	

Supplementary Information

Example of calculation:

Photon flux (
$$\mu$$
mol) = $\frac{Intensity of light \times Wavelength}{Planck constant \times Photon density} \times \frac{Incident area}{Avogadro's constant}$
Photon flux (μ mol) = $\frac{12.13 \times 254 \times 10^{-9}}{6.63 \times 10^{-34} \times 3 \times 10^{8}} \times \frac{19 \times 10^{-3}}{6.023 \times 10^{23}} = 4.4886 \times 10^{-7} \text{ mole/s} = 0.4486 \ \mu$ mole/s

$$AQY = \frac{Product \ yields \ (\mu mol) \times no \ of \ electrons}{Photon \ flux \ (\mu mol)} \times 100$$
$$AQY = \frac{9.39 \times 10^{-3} \times 2}{0.4486} \times 100 = 4.19 \ \%$$

Supplementary Information References:

[S1] E. Alwin, K. Kočí, R. Wojcieszak, M. Zieliński, M. Edelmannová, M. Pietrowski, Influence of high temperature synthesis on the structure of graphitic carbon nitride and its hydrogen generation ability, Materials, 13 (2020) 2756.

[S2] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Highly efficient photocatalytic H_2 evolution from water using visible light and structure-controlled graphitic carbon nitride, Angewandte Chemie International Edition, 53 (2014) 9240-9245.

[S3] Y.S. Jun, J. Park, S.U. Lee, A. Thomas, W.H. Hong, G.D. Stucky, Three-dimensional macroscopic assemblies of low-dimensional carbon nitrides for enhanced hydrogen evolution, Angewandte Chemie International Edition, 52 (2013) 11083-11087.

[S4] B. Yue, Q. Li, H. Iwai, T. Kako, J. Ye, Hydrogen production using zinc-doped carbon nitride catalyst irradiated with visible light, Science and Technology of Advanced Materials, (2011).

[S5] N. Todorova, I. Papailias, T. Giannakopoulou, N. Ioannidis, N. Boukos, P. Dallas, M. Edelmannová, M. Reli, K. Kočí, C. Trapalis, Photocatalytic H_2 evolution, CO_2 reduction, and NOx oxidation by highly exfoliated g- C_3N_4 , Catalysts, 10 (2020) 1147.