Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Copper-Catalyzed Oxidative Direct C3-cyanoarylation of

Quinoxalin-2(1H)-ones via Denitrogenative Ring-Opening of 3-

Aminoindazoles

ChenxuMou,^a JinweiYuan,^{a,*} Qian Hu,^a BingjieHan,^a LiangruYang,^{a,*} YongmeiXiao,^a Lulu Fan,^a

ShourenZhang,^{b,*} LingboQu^c

^a School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China

^b Henan Key Laboratory of Nanocomposites and Applications; Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China

^c College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China

*Corresponding authors:

E-mail: yuanjinweigs@126.com (Jinwei Yuan)

Contents

1 General information	S1
2 Screening the reaction conditions	S1
3 Copies of spectra of products	S3
4 D ₂ O deuterium substitution experiment of product 5	
5 HR MS spectrum of the adduct 6	S37
6 HR MS spectrum of the adduct 7	\$38

1General information

All chemicals were commercially available and used as received without further. Column chromatography was performed using 300-400 mesh silica. Nuclear magnetic resonance spectra were recorded on Bruker Avance 400 MHz spectrometer. ¹H NMR spectra are recorded in parts per million from tetramethylsilane. Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet and br = broad), coupling constant in Hz and integration. ¹³C NMR spectra were recorded in parts per million from tetramethylsilane. ¹⁹F NMR spectra were recorded in parts per million from tetramethylsilane. ¹⁹F NMR spectra were recorded in parts per million sith fluorobenzene as external standard.High resolution mass spectra (HR MS) was performed using a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer equipped with an EASY Spray nanospray source operated in positive ion mode. IR spectra were recorded on WQF-510 Fourier transform infrared spectrophotometer. Melting points were measured on an XT4A microscopic apparatus uncorrected.

2 Screening the reaction conditions

Table	le S1 Screening the molar ratio of 1a and 2a ^a		
Intrv	the molar ratio of 1a and 2a	Yields (%)	

Entry	the molar ratio of 1a and 2a	Yields (%) ^b	
1	1:1.0	45	
2	1:1.2	50	
3	1:1.5	56	
4	1:2.0	56	

^a Reaction conditions: 1-methyl quinoxalin-2(1H)-ones 1a (0.2 mmol), 3-aminoindazole 2a, Cu(OAc)₂ (0.03 mmol,

5.43 mg), TBPB (0.5 mmol, 97.0 mg), and MeCN (2 mL), heated in oil bath at 120 °C for 2.0 h under air.

^b Isolated yield.

N N N O +	NH ₂ N N H	Reaction conditions	NC N N O
1a	2a		3aa
Table S2 Screening the reaction temperature ^a			

Entry	the reaction temperature (°C)	Yields (%) ^b
1	60	40
2	80	51
3	100	63
4	120	57

^{*a*} Reaction conditions: 1-methyl quinoxalin-2(1*H*)-ones **1a** (0.2 mmol, 32.0 mg), 3-aminoindazole **2a** (0.3 mmol, 39.9 mg), Cu(OAc)₂ (0.03 mmol, 5.43 mg), TBPB (0.5 mmol, 97.0 mg), and MeCN (2 mL), heated at 120 °C for 2.0 h under air.

^b Isolated yield.

3 Copies of spectra of products

Fig. 1 ¹H NMR spectrum of compound 3aa

Fig. 2¹³C NMR spectrum of compound 3aa

Fig. 3 ¹H NMR spectrum of compound 3ba

Fig. 4¹³C NMR spectrum of compound 3ba

Fig. 5 ¹H NMR spectrum of compound 3ca

Fig. 6 ¹³C NMR spectrum of compound 3ca

Fig. 7 ¹H NMR spectrum of compound 3da

Fig. 8 ¹³C NMR spectrum of compound 3da

Fig. 9 ¹H NMR spectrum of compound 3ea

Fig. 10 ¹³C NMR spectrum of compound 3ea

Fig. 11 ¹H NMR spectrum of compound 3fa

Fig. 12 ¹³C NMR spectrum of compound 3fa

Fig. 13 ¹H NMR spectrum of compound 3ga

Fig. 14 ¹³C NMR spectrum of compound 3ga

Fig. 15 ¹H NMR spectrum of compound 3ha

Fig. 16 ¹³C NMR spectrum of compound 3ha

Fig. 17 ¹H NMR spectrum of compound 3ia

Fig. 18 ¹³C NMR spectrum of compound 3ia

Fig. 19 ¹H NMR spectrum of compound 3ja

Fig. 20 ¹³C NMR spectrum of compound 3ja

Fig. 21 ¹H NMR spectrum of compound 3ka

Fig. 22 ¹³C NMR spectrum of compound 3ka

Fig. 23 ¹H NMR spectrum of compound 3la

Fig. 24 ¹³C NMR spectrum of compound 3la

Fig. 25 ¹⁹F NMR spectrum of compound 3la

Fig. 27 ¹³C NMR spectrum of compound 3ma

Fig. 28 ¹H NMR spectrum of compound 3na

Fig. 29 ¹³C NMR spectrum of compound 3na

Fig. 30 ¹H NMR spectrum of compound 3oa

Fig. 31 ¹³C NMR spectrum of compound 3oa

Fig. 32 ¹H NMR spectrum of compound 3pa

Fig. 33 ¹³C NMR spectrum of compound 3pa

Fig. 34 ¹⁹F NMR spectrum of compound 3pa

Fig. 35 ¹H NMR spectrum of compound 3qa

Fig. 36 ¹³C NMR spectrum of compound 3qa

Fig. 37 ¹H NMR spectrum of compound 3ra

Fig. 38 ¹³C NMR spectrum of compound 3ra

Fig. 39 ¹H NMR spectrum of compound 3sa

Fig. 40¹³C NMR spectrum of compound 3sa

Fig. 41 ¹⁹F NMR spectrum of compound 3sa

Fig. 42 ¹H NMR spectrum of compound 3ta

Fig. 43 ¹³C NMR spectrum of compound 3ta

Fig. 44 ¹H NMR spectrum of compound 3ua

Fig. 45 ¹³C NMR spectrum of compound 3ua

Fig. 46 ¹H NMR spectrum of compound 3ab

Fig. 47 ¹³C NMR spectrum of compound 3ab

Fig. 48 ¹⁹F NMR spectrum of compound 3ab

Fig. 49 ¹H NMR spectrum of compound 3ac

Fig. 50 ¹³C NMR spectrum of compound 3ac

Fig. 51 ¹H NMR spectrum of compound 3ad

Fig. 52 ¹³C NMR spectrum of compound 3ad

Fig. 53 ¹H NMR spectrum of compound 3ae

Fig. 54 ¹³C NMR spectrum of compound 3ae

Fig. 55 ¹H NMR spectrum of compound 3af

Fig. 56 ¹³C NMR spectrum of compound 3af

Fig. 57 ¹H NMR spectrum of compound 3ag

Fig. 58 ¹³C NMR spectrum of compound 3ag

Fig. 59 ¹H NMR spectrum of compound 3ah

Fig. 60 ¹³C NMR spectrum of compound 3ah

Fig. 61 ¹H NMR spectrum of compound 3ai

Fig. 62 ¹³C NMR spectrum of compound 3ai

Fig. 63 ¹H NMR spectrum of compound 4

Fig. 64 ¹³C NMR spectrum of compound 4

Fig. 66 ¹H NMR spectrum of compound 5

Fig. 67 ¹³C NMR spectrum of compound 5

Fig. 68 HR MS spectrum of compound 5

4 D₂O deuterium substitution experiment of product 5

Fig. 69 ¹H NMR spectrum of compound 5(D₂O + DMSO as co-solvent)

5 HR MS spectrum of the adduct 6

Fig. 70 HR MS spectrum of the adduct 6

6 HR MS spectrum of the adduct 7

Fig. 71 HR MS spectrum of the adduct 7