Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Effect of introducing a cyclobutylmethyl group to an onium cation on the thermodynamic properties of ionic clathrate hydrate

Sakura Azuma,^a Jin Shimada,^{bcd} Katsuhiko Tsunashima,^{*e} Takeshi Sugahara,^{*bc} Takayuki Hirai ^{bc}

- Advanced Engineering Faculty, National Institute of Technology, Wakayama Collage, 77
 Noshima, Nada, Gobo, Wakayama 644-0023, Japan
- b. Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- c. Division of Energy and Photochemical Engineering, Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-0083, Japan
- e. Department of Material Science, National Institute of Technology, Wakayama Collage, 77 Noshima, Nada, Gobo, Wakayama 644-0023, Japan

Corresponding Authors

*(K.T.) Tel: +81-738-29-8413. Fax: +81-738-29-8413. E-mail : tsunashima@wakayama-nct.ac.jp. *(T.S.) Tel and Fax: +81-6-6850-6293. E-mail: sugahara@cheng.es.osaka-u.ac.jp.

NMR characterization of tri-*n*-butyl(cyclobutylmethyl)phosphonium bromide (P444(1c4)-Br) synthesized in the present study.

¹H NMR (400.13 MHz in CDCl₃), δ 0.90–1.05 (t, 9H, P⁺CH₂(CH₂)₂CH₃); 1.41–1.67 (m, 12H, P⁺CH₂(CH₂)₂CH₃); 1.83–2.05 (m, 4H, P⁺CH₂CH(CH)₂CH₂); 2.15–2.31 (m, 2H, P⁺CH₂CH(CH)₂CH₂); 2.32–2.53 (m, 6H, P⁺CH₂(CH₂)₂CH₃); 2.55–2.75 (m, 3H, P⁺CH₂CH(CH)₂CH₂).

¹³C NMR (100.62 MHz in CDCl₃), δ 13.36 (s, P⁺CH₂CH₂CH₂CH₂CH₃); 18.70–19.03 (d, P⁺CH₂CH₂CH₂CH₃); 19.49 (s, P⁺CH₂CH(CH)₂CH₂); 23.67–23.88 (m, P⁺CH₂CH₂CH₂CH₂CH₃); 25.60 (s, P⁺CH₂CH₂CH₂CH₃); 26.04 (d, P⁺CH₂CH(CH)₂CH₂); 29.16-29.22 (d, P⁺CH₂CH(CH)₂CH₂), 30.17–30.27 (d, P⁺CH₂CH(CH)₂CH₂).

³¹P NMR (161.97 MHz in CDCl₃), δ 32.04 (s, *P*⁺(C₄H₉)₃(CH₂CH(CH)₂CH₂)).

Raman spectra of tri-*n*-butyl(cyclobutylmethyl)phosphonium bromide (P444(1c4)-Br) salt.

Figure S1 shows the Raman spectra of P444(1c4)-Br and P4444-Br salts. As noted in Figure 5, there are some differences derived from cyclobutylmethyl group, but no significant difference exists in the other peaks.

Figure S1. Raman spectra of P444(1c4)-Br and P4444-Br salts recorded at 77 K.