Electronic Supplementary Material (ESI) for New Journal of Chemistry.

This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information for

Zero-Dimensional Lead-Free Bismuth-Based Metal Halide: $[C_6H_5(CH_2)_2CH(NH_3)CH_3]_2BiCl_5$

Wen Juan Wei,* Hong Qiang Gao and Yun Zhi Tang

Facuity of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China

Methods

Synthesis

All chemicals and solvents were of reagent grade and used as received. Single crystals of $C_6H_5(CH_2)_2CH(NH_3)CH_3$ (**MPA₂-BiCl₅**) are synthesized as follow: BiCl₃ (1 mmol) was dissolved

in 4 mL concentrated hydrochloric acid HCl solution in a beaker. Then add 1-Methyl-3-phenylpropylaminium (2 mmol) to 2 mL H_2O in another beaker. Whereafter, the latter was slowly dripped into the former along the wall.

Thermal measurements

Thermogravimetric analysis (TGA) measurements of MPA₂-BiCl₅ were performed on a TA-Instruments STD2960 system from 293 to 1050 K.

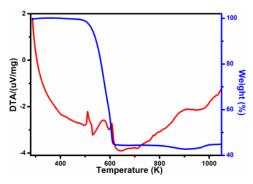


Figure S1. TG and DTA curves of MPA₂-BiCl₅ between 300 and 1050 K.

Single crystal X-ray diffraction

Single crystal X-ray diffractions were carried out with graphite monochromated Mo radiation (λ = 0.71073 Å) on an Oxford Diffraction Gemini E Ultra diffractometer. Data sets were collected by using $CrysAlis^{Pro}$ software. The program Olex2-1.2 was employed as an interface to invoke program SHELXS97 and SHELXL97 executables.¹ The crystal structures were solved by direct methods with SHELXS97 and refined by full-matrix least squares on F^2 with anisotropic atomic displacement parameters for all non-hydrogen atoms using SHELXL97.^{2,3} All H atoms were located from molecular geometric calculations and refined with isotropic temperature parameters. The crystallographic information of MPA_2 -BiCl₅ determined at 100 K and 293 K are listed in the Table 1. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data request/cif (CCDC 2219486 and 2217399).

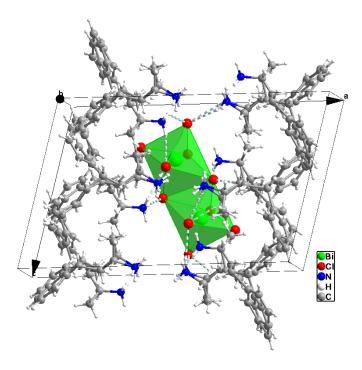


Figure S2. Asymmetric unit and the atom labeling scheme of $MPA_2\text{-BiCl}_5$ at 100 K.

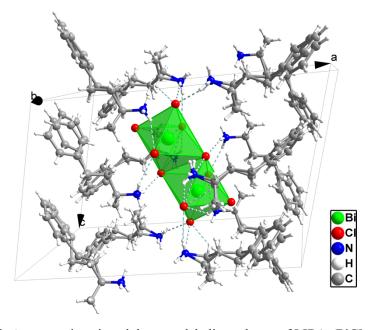


Figure S3. Asymmetric unit and the atom labeling scheme of MPA_2 -BiCl₅ at 293 K.

UV-vis absorption spectra

UV-vis absorption spectra were obtained using a Shimadzu (Tokyo, Japan) UV-2550 spectrophotometer in a range of 200~800 nm. The powder crystals of three compositions were used for the measurement. The optical band gap was determined by a variant of the *Tauc* equation:⁴

$$[hv \cdot F(R_{\infty})]^{1/n} = A(hv - E_{g})$$

where h is the Planck's constant, v represents the frequency of vibration, A is the proportional constant, E_g is the bandgap and $F(R_\infty)$ is Kubelka-Munk equation: $F(R_\infty) = (1-R_\infty)^2/2R_\infty$. In addition, n=1/2 stands for direct band gap, while n=2 is indirect band gap.

Density functional theory (DFT) calculations

The first-principles calculations were performed using the CASTEP code,⁶ a total energy package based on pseudopotentail density functional theory (DFT).^{7,8} The correlation and exchange terms in the Hamiltonian were described by the functionals developed by Perdew, Burke and Ernzerhof (PBE)⁹ in the generalized gradient approximation (GGA)¹⁰ form. The optimized fine pseudopotential was adopted to model the effective interactions between the valence electrons and atomic cores, which allow us to choose a relatively small plane-wave basis set without compromising the computational accuracy. Kinetic energy cutoff 240 eV and dense Monkhorst-Pack¹¹ with medium k-point meshes interval in the Brillouin zones were chosen.

Reference

- (1) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.; Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. *J. Appl. Crystallogr.* **2009**, 42 (2), 339.
- (2) Sheldrick, G.; University of Göttingen, Germany Göttingen, 1997.
- (3) SIR92, A. program for automatic solution of crystal structures by direct methods: A. *Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, MC Burla, G. Polidori, MJ Camalli, J. Appl. Crystallogr.* **1994,** 27, 435.
- (4) Tauc, J. Absorption edge and internal electric fields in amorphous semiconductors. *Mater. Res. Bull.* **1970**, *5* (8), 721.
- (5) Kortüm, G.; Braun, W.; Herzog, G. Prinzip und Meßmethodik der diffusen Reflexionsspektroskopie. *Angew. Chem.* **1963**, *75* (14), 653.
- (6) Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. *Z. Krist.-Cryst. Mater.* **2005**, *220* (5/6).

- (7) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. *Phys. Rev.* **1965**, *140* (4A), A1133.
- (8) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, a. J. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. *Rev. Mod. Phys.* **1992**, *64* (4), 1045.
- (9) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. *Phys. Rev. Lett.* **1996,** 77 (18), 3865.
- (10) Perdew, J. P.; Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. *Phys. Rev. B Condens. Matter* **1992**, *46* (20), 12947.
- (11) Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. *Phys. Rev. B* **1976,** *13* (12), 5188.