Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information (ESI)

TiO₂/ZIF-67 nanocomposites synthesized by the microwave-assisted solvothermal method: a correlation between the synthesis conditions and antimicrobial properties

Raquel Dantas Campos,^a André Luiz Menezes de Oliveira,^a Arpad Mihai Rostas,^{b,g} Andrei Cristian Kuncser,^b Constatin Catalin Negrila,^c Aurelian-Catalin Galca,^{d,*} Camila Félix,^e Lúcio Castellano,^e Fausthon Fred da Silva,^f and Iêda Maria Garcia dos Santos^{a,*}

^a Núcleo de Pesquisa e Extensão LACOM, Universidade Federal da Paraíba, 58051-900 João Pessoa-PB, Brazil.

^b Laboratory of Atomic Structures and Defects in Advanced Materials, National Institute of Materials Physics, 077125 Magurele, Romania.

^c Laboratory of Nanoscale Condensed Matter Physics, National Institute of Materials Physics, 077125 Magurele, Romania.

^d Laboratory of Multifunctional Materials and Structures, National Institute of Materials Physics, 077125 Magurele, Romania.

^e Escola Técnica de Saúde, Universidade Federal da Paraíba, 58051-900 João Pessoa-PB, Brazil.

^fLaboratorio de Compostos de Coordenacao e Quimica de Superficie, Departamento de Quimica, Universidade Federal da Paraiba, 58051-900 Joao Pessoa-PB, Brazil.

^gLaboratory of Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania.

*Corresponding authors:

IMGS: <u>ieda@quimica.ufpb.br</u>

ACG: ac_galca@infim.ro

Fig. S1 XPS deconvolutions for the synthesized TiO₂: Ti 2p (a), O 1s (b) and C 1s (c).

Fig. S2 XPS deconvolutions for the synthesized ZIF-67: Co 2p (a), O 1s (b), N 1s (c) and C 1s (d).

Fig. S3 XPS deconvolutions for the synthesized TSC: Co 2p (a), N 1s (b) and C 1s (c).

Fig. S4 XPS deconvolutions for the synthesized OPC: Co 2p (a), N 1s (b) and C 1s (c).

UV-vis analysis

Fig. S5 UV-vis spectra of the composites and pristine compounds

EPR Measurements

Fig. S6 EPR spectra of the pure TiO2 and ZIF-67 compounds and their corresponding OPC and TSC composites. The inset indicates the low EPR signal observed for the pristine compounds.

SEM analysis

TEM/HR-TEM analysis

Fig. S8 TEM (images of the synthesized pristine ZIF-67 sample.

Fig. S9 TEM (a) and HR-TEM (b,c) images of the synthesized TiO_2 nanoparticles

TEM/EDS elemental mapping

Fig. S10 Typical TEM and EDS elemental mapping images of O, Ti, C and Na for the TiO_2 nanoparticles.

TEM/EDS mapping

Fig. S11 Typical TEM (a) and EDS elemental mapping of O (b), Co (c), Cl (d) and C (e) images for ZIF-67 nanoparticles (a-d).

Cobalt/ligand release test by UV-vis spectroscopy

Fig. S12 UV-vis absorption spectra for the Co ions and ligand release by ZIF-67 (a), OPC (b) and TSC (c) composites.

Zeta Potential of TiO₂ nanoparticles

Fig. S13 Zeta potential variation of the TiO_2 nanoparticles as a function of pH.