Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Prediction of stable silver selenide-based energy materials sustained by rubidium selenide alloying

Yee Hui Robin Chang ^{a, *}, Junke Jiang ^b, Keat Hoe Yeoh ^{c, d, *}, Moi Hua Tuh ^e, Fei Ha Chiew ^f

- ^a Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
- ^b Univ Rennes, ENSCR, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
- ^c Department of Electrical and Electronic Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- ^d Center for Photonics and Advanced Material Research, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 43000 Kajang, Selangor, Malaysia
- ^e Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
- ^f School of Civil Engineering, College of Engineering, Universiti Teknologi MARA, Cawangan Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
- * Electronic mail: robincyh@uitm.edu.my; keathoe.yeoh@gmail.com

Space group	Unit cell	Lattice constants / Å	Atomic Wyckoff positions
Bulk Rb ₆ Ag ₂ Se ₄ <i>R3c</i> (SG 167)		<i>a</i> = 9.409 <i>c</i> = 19.126	Rb1 18e (0.28270, 0.00000, 0.25000) Ag1 6b (0.00000, 0.00000, 0.00000) Se1 12c (0.00000, 0.00000, -0.37077)
Bulk Rb ₂ Ag ₂ Se ₂ <i>Cmcm</i> (SG 63)		a = 6.653 b = 12.802 c = 6.266	Rb1 4c (0.00000, 0.22767, 0.25000) Ag1 4b (0.00000, 0.50000, 0.00000) Se1 4c (0.00000, -0.34886, 0.25000)

S1 Crystallographic data and space group (SG) for Rb₂Se-Ag₂Se phases. Red, blue and green spheres represent Rb, Ag and Se atoms, respectively.

Bulk Rb ₂ Ag ₆ Se ₄ <i>P</i> 1 (SG 1)		a = 8.887 b = 8.481 c = 5.473	Rb1 1a (-0.00191, 0.17494, -0.08372) Rb2 1a (0.00281, -0.32311, 0.40799) Ag1 1a (0.41240, -0.03285, -0.46218) Ag2 1a (0.49613, 0.16157, -0.07138) Ag3 1a (-0.38305, -0.13610, -0.19985) Ag4 1a (-0.43488, 0.34633, 0.33661) Ag5 1a (0.40166, 0.47962, 0.02478) Ag6 1a (0.49788, -0.33740, 0.42362) Se1 1a (0.24382, 0.13063, 0.32368) Se2 1a (0.23545, -0.37551, -0.18996) Se3 1a (-0.24970, 0.20336, -0.47508) Se4 1a (-0.24668, -0.30765, 0.03254)
Bulk Rb ₂ Se Fm3m (SG 225)		<i>a</i> = 8.098	Rb1 8c (0.25000, 0.25000, 0.25000) Se1 4a (0.00000, 0.00000, 0.00000)
Bulk Ag ₈ Se ₄ P2 ₁ 2 ₁ 2 ₁ (SG 19)		a = 7.358 b = 7.024 c = 4.645	Ag1 4a (-0.38258, -0.02138, -0.25905) Ag2 4a (-0.29060, -0.36886, 0.07677) Se1 4a (0.08355, 0.24681, -0.13060)
$2D$ $Rb_2Ag_2Se_2$ $P2_1\overline{m}$ (SG 11)	zigzag X	a = 5.036 b = 5.478 c = 19.490 $\beta = 91.87^{\circ}$	Rb1 2e (-0.48738, 0.25000, -0.37995) Ag1 2c (0.00000, 0.00000, 0.50000) Se1 2e (-0.01578, 0.25000, 0.39193)

S2 Band energies of the CBM and VBM for bulk (a) $Rb_2Ag_2Se_2$, (b) $Rb_2Ag_6Se_4$, (c) $Rb_6Ag_2Se_4$ and (d) monolayer $Rb_2Ag_2Se_2$ phases as a function of lattice dilation along *x* and *y* directions. The fitted slopes show the E_D in eV.

S3 Elastic properties, Debye temperature, sound velocities and Gruneisen parameter

Based on the Voigt-Reuss-Hill approximation [1], elastic moduli such as shear modulus G (GPa), bulk modulus B (GPa), Young's modulus E (GPa) and Poisson's ratio v were calculated. Relevant equations for these computations are stated as follows.

$$B = \frac{1}{2} \left(B_{\text{Voigt}} + B_{\text{Reuss}} \right) \tag{1}$$

$$G = \frac{1}{2} \left(G_{\text{Voigt}} + G_{\text{Reuss}} \right)$$
⁽²⁾

in which B and G are the mean of Voigt [2] and Reuss [3] approximations.

$$E = \frac{9BG}{3B+G} \tag{3}$$

$$\nu = \frac{3B - 2G}{6B + 2G} \tag{4}$$

Another crucial parameter which has a strong influence on the physical properties of the solid is the Debye temperature Θ_D , calculated by means of the sound velocity [4], as follows:

$$\Theta_D = \frac{h}{k_B} \left[\frac{3n}{4\pi} \left(\frac{N_A \rho}{M} \right) \right] v_m \tag{5}$$

where k_B , h, N_A , ρ , M and n are the Boltzmann's constant, Planck's constant, Avogadro's constant, density, molecular weight and number of atoms per unit cell, respectively. The longitudinal sound velocity, transverse sound velocity and mean sound velocity are represented by v_l , v_t and v_m , respectively. v_m is quantifiable by v_l and v_t [4] using the following:

$$v_{l} = \left[\frac{\left(B + \frac{4}{3}G\right)}{\rho}\right]^{\frac{1}{2}}$$
(6)

$$v_t = \left(\frac{G}{\rho}\right)^{\frac{1}{2}} \tag{7}$$

$$v_m = \left[\frac{1}{3}\left(\frac{2}{v_t^3} + \frac{1}{v_l^3}\right)\right]^{-\frac{1}{3}}$$
(8)

Finally, these velocities can also be applied onto the formulation below to determine the Gruneisen parameter γ .

$$\gamma = \frac{9(v_l^2 - 4/3 v_t^2)}{2(v_l^2 + 2v_t^2)} \tag{9}$$

- [1] R. Hill (1952). The elastic behavior of a crystalline aggregate. Proc. Phys. Soc. A, 65, 349-354.
- [2] W. Voigt (1928). Lehrbuch der Kristallohysic Teubner, Leipzig, Germany.

- [3] A. Reuss (1929). Berechnung der Fliebgrenze von Mischkristallen auf Grundder Plastizittsbedingung fur Einkristalle. Z. Angew. Math. Mech., 9, 49-58.
- [4] O.L. Anderson (1963). A Simplified Method For Calculating The Debye Temperature From Elastic Constants. J. Phys. Chem. Solids, 24, 909-917.

S4 Surface calculations for 2D Rb₂Ag₂Se₂

S5 Detailed operation of scissor factor

For dielectric function calculations using VASP, the scissor shift value was added to the "SCISSOR" tag, following the method described in

https://www.vasp.at/wiki/index.php/Improving_the_dielectric_function#Model-BSE

while for transport calculations, it was set in one of the BoltzTraP input file lines (0 0 0 0.0 # iskip idebug setgap shiftgap), under the "shiftgap" tag.