Supporting Information

Proton conduction studies on two nonporous coordination complexes with different proton density

Ying-Bing Lu^{*, a}, Xue-Lian Lin^a, Jia-Hao Ai^a, Yu-Zheng Cai^a, Shui-Qing Li^a, Rong Li^{*, b}, Shi-Yong Zhang^a, Yong-Rong Xie^a and Shui-Dong Zhu^{*,a}

^aJiangxi Key Laboratory of Function of Materials Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, P. R. China.

^bSchool of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.

^cSchool of Materials Science & Engineering, Hubei University, Wuhan 430062, P. R. China E-mail: ybluhm@163.com, rli@hubu.edu.cn, zsd2002@sina.com.

Table S1. Various coordination modes of H₃CAM ligand (quoted from our previous literature¹)

Monodentate	Didentate	Tridentate			Tetradentate
				5) M M M M M	
					Complex 1
					Complex 2
			Pendentate		
	Complex 1				
			Hexadentate		

		Heptadentate		
Octadentate	Nanodentate			Dodecadentate
			Tendentate	

Table S2. Diverse deprotonated modes of H_3CAM ligand

L-1		L-2	L-3		
HOOC N COO.	-00C N ⁺ C00-	-00C N C00-	HOOC N COO.	-00C N ⁺ C00-	-00C N C00-

Table S3. Selected Bond Lengths (Å) and Bond Angles (°) for 1 and 2

Complex 1	Bond Lengths (Å)		
Cu(1)-O(10)#1	1.8768(19)	Cu(2)-N(2)	1.879(2)
Cu(1)-N(1)	1.894(2)	Cu(2)-O(4)	1.9008(19)
Cu(1)-O(3)	2.0642(19)	Cu(2)-O(8)	1.9919(19)
Cu(1)-O(1)	1.9797(19)	Cu(2)-O(6)	2.0678(19)
Cu(1)-Na(1)#2	3.2136(13)	Cu(2)-O(1W)	2.266(2)
Complex 1	Bond Angles (°)		
O(10)#1-Cu(1)-N(1)	169.93(9)	N(2)-Cu(2)-O(4)	156.18(10)
O(10)#1-Cu(1)-O(3)	90.40(8)	N(2)-Cu(2)-O(8)	81.83(9)
N(1)-Cu(1)-O(3)	79.89(8)	O(4)-Cu(2)-O(8)	89.06(8)
O(10)#1-Cu(1)-O(1)	108.62(8)	N(2)-Cu(2)-O(6)	79.73(8)
N(1)-Cu(1)-O(1)	80.85(8)	O(2)-Cu(2)-O(6)	106.10(8)
O(3)-Cu(1)-O(1)	160.36(8)	O(8)-Cu(2)-O(6)	160.97(8)
O(10)#1-Cu(1)-Na(1)#2	52.53(6)	N(2)-Cu(2)-O(1W)	98.94(9)
N(1)-Cu(1)-Na(1)#2	120.08(7)	O(6)-Cu(2)-O(1W)	86.36(8)
Complex 2	Bond Lengths (Å)		

Mn(1)-O(1)	2.0681(13)	Mn(2)-O(6)	2.0741(12)	
Mn(1)-O(8)	2.1920(13)	Mn(2)-O(4)#1	2.1650(13)	
Mn(1)-N(4)	2.2021(17)	Mn(2)-N(8)	2.1723(16)	
Mn(1)-N(2)	2.2039(14)	Mn(2)-N(1)#1	2.2186(14)	
Mn(1)-N(3)	2.2941(16)	Mn(2)-N(7)	2.4921(16)	
Mn(1)-O(7)	2.4548(13)	Mn(2)-O(2)#1	2.5071(13)	
Complex 2	Bond Angles (°)			
O(1)-Mn(1)-O(8)	105.99(6)	O(6)-Mn(2)-O(4)#1	117.66(5)	
O(1)-Mn(1)-N(4)	149.23(6)	O(6)-Mn(2)-N(8)	119.15(6)	
O(8)-Mn(1)-N(4)	99.55(6)	O(4)#1-Mn(2)-N(8)	115.60(6)	
O(1)-Mn(1)-N(2)	109.34(5)	O(6)-Mn(2)-N(1)#1	118.42(5)	
O(8)-Mn(1)-N(2)	72.96(5)	O(4)#1-Mn(2)-N(1)#1	72.34(5)	
N(4)-Mn(1)-N(2)	94.23(6)	N(8)-Mn(2)-N(1)#1	103.81(6)	
O(1)-Mn(1)-N(3)	88.30(6)	O(6)-Mn(2)-N(7)	90.51(5)	
O(8)-Mn(1)-N(3)	88.91(6)	O(4)#1-Mn(2)-N(7)	78.47(5)	
Symmetry Codes for 1, $\#1 x - 1/2$, $-y - 7/2$, $z - 1/2$; $\#2 - x + 3/2$, $y - 1/2$, $-z + 1/2$; $\#3 - x + 3/2$,				

y + 1/2, -z + 1/2; #4 - x + 2, -y - 3, -z + 1; #5 x - 1/2, -y - 7/2, z + 1/2;

For **2**, #1 : *x*, *y* + 1, *z*; B: *x*, *y* –1, *z*;

Table S4. Summary of *SHAPE* analysis of Cu1 and Cu2 for 1.

ion	label	shape	symmetry	$Distortion(\tau)$
Cu1	PP-5	Pentagon	D5h	23.770
	vOC-5	Vacant octahedron	C4v	4.597
	TBPY-5	Trigonal bipyramid	D3h	8.613
	SPY-5	Spherical square pyramid	C4v	3.960
	JTBPY-5	Johnson trigonal bipyramid J12	D3h	11.730
	PP-5	Pentagon	D5h	27.800
	vOC-5	Vacant octahedron	C4v	2.727
Cu2	TBPY-5	Trigonal bipyramid	D3h	4.320
	SPY-5	Spherical square pyramid	C4v	1.703
	JTBPY-5	Johnson trigonal bipyramid J12	D3h	6.698

D-HA	d(HA)(Å)	d(DA)(Å)	<dha(å)< th=""></dha(å)<>
O1WH1WAO3	2.30	3.048(3)	142
O5H3O7	1.87(6)	2.694(3)	167(4)
O2WH2WA.O7	2.06	2.792(4)	139
O2WH2WBO3	2.54	3.179(4)	129
O2WH2WBO4	2.14	2.971(4)	154
O1WH1WBO8	1.94	2.821(3)	175

 Table S5. H-bonding length and angle table for 1.

Figure S1. The 3D network of 1 in which the Na⁺ cations filled in one channel along the a axis.

ion	label	shape	symmetry	$Distortion(\tau)$
	HP-6	Hexagon	D6h	33.642
	PPY-6	Pentagonal pyramid	C5v	14.648
Mn1	OC-6	Octahedron	Oh	7.812
	TPR-6	Trigonal prism	D3h	6.216
	JPPY-6	Johnson pentagonal pyramid J2	C5v	17.919
	HP-6	Hexagon	D6h	32.265
	PPY-6	Pentagonal pyramid	C5v	8.193
Mn2	OC-6	Octahedron	Oh	16.851
	TPR-6	Trigonal prism	D3h	5.760
	JPPY-6	Johnson pentagonal pyramid J2	C5v	11.578

 Table S6. Summary of SHAPE analysis of Mn1 and Mn2 for 2.

 Table S7. H-bonding length and angle table for 2.

D-HA	d(HA) (Å)	d(DA) (Å)	<dha (å)<="" th=""></dha>
O(5)-H(5)O(7)	1.80	2.6176(18)	173
N(5)H(5A)O(8)	2.10	2.837(2)	143
N(5)H(5A)O(9)	2.60	3.339(2)	145
N(6)H(6)O(9)	1.93	2.776(3)	170
N(9)H(9AO(3)	2.14	2.989(2)	167
N(9)H(9A)O(4)	2.58	3.129(2)	122
O(10)H(10)O(2)	1.82	2.6132(17)	161
N(10)H(10A)O(4)	2.17	2.892(2)	142

Figure S2. TGA and DTA of 1 from 30 °C to 800 °C

Figure S3. TGA and DTA of 2 from 30 °C to 800 °C

Figure S5. IR spectra for 2.

Figure S6. UV-vis spectra for 1.

Figure S7. UV-vis spectra for 2.

Figure S8. The IR spectra of 1 at 25 °C under different humidity (RH)

Figure S9. The IR spectra of 2 at 25 °C under different humidity (RH)

RH / %	$\sigma/{ m S~cm^{-1}}$
50	7.10×10^{-10}
60	3.04×10 ⁻⁹
70	2.48×10^{-8}
80	1.18×10^{-7}
90	6.52×10^{-7}
100	5.22×10 ⁻⁶

Table S8. The proton conductivity of 1 at 25 °C under variable relative humidity (RH).

Table S9. The proton conductivity of 1 at 100 % under variable temperature (°C).

Temperature / °C	$\sigma/ m S~cm^{-1}$
25	5.22×10 ⁻⁶
40	1.51×10^{-5}
55	2.72×10^{-5}
70	4.72×10 ⁻⁵
85	6.72×10 ⁻⁵

Table S10. The proton conductivity of 2 at 25°C under variable relative humidity (RH).

RH / %	$\sigma/{ m S~cm^{-1}}$
50	7.1×10^{-10}
60	1.59×10^{-9}
70	1.05×10^{-9}
80	2.16×10 ⁻⁷
90	8.19×10^{-7}
100	3.27×10^{-5}

Table S11. The proton conductivity of 2 at 100 % under variable temperature (°C).

Temperature / °C	$\sigma/ m S~cm^{-1}$
25	3.27×10 ⁻⁵
40	4.18×10 ⁻⁵
55	5.61×10 ⁻⁵
70	7.05×10^{-5}
85	1.70×10^{-4}

Figure S10. Nyquist plot for 1 at 85 °C under anhydrous condition

Figure S11. The photograph of crystals of 1 after proton conduction.

Figure S12. The photograph of crystals of 2 after proton conduction.

(1) Y. -B. Lu, J. Huang, X. -R. Yuan, S. -J. Liu, R. Li, H. -j. Liu, M. -P. Liu, H. -R. Wen, S. -D. Zhu and Y. -R. Xie, *Cryst. Growth. Des.*, 2022, 22, 1045–1053.