Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Electronic Supplementary Information:

Li₇SrScB₁₂O₂₄ and Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄: Two new quaternary

rare-earth borates with short UV cutoff edges

Jianbang Chen^a, Jie Zhang^a, Aixin Zhu^b, Xuchu Huang^a*

^a College of Physics and Material Science, Changji University, Changji 931100, China

^b College of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang 83005

4, China.

*Corresponding Authors: hxuchu@163.com

Experimental section

Reagents

All raw materials including K_2CO_3 , Li_2CO_3 , $M^{II}CO_3$ ($M^{II} = Sr$, $Ba_{0.6}Ca_{0.4}$), Sc_2O_3 , and B_2O_3 were purchased from Shanghai Aladdin Chemical Industry Co., Ltd, as, M^{II} , Sc, and B-based reactants for the expected $Li_7M^{II}ScB_{12}O_{24}$ ($M^{II} = Sr$, $Ba_{0.6}Ca_{0.4}$).

Single crystal preparation

Single crystals of Li₇SrScB₁₂O₂₄ and Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄ were synthesized by a high-temperature solution reaction with a spontaneous nucleation technique. The Li₇SrScB₁₂O₂₄ crystal was obtained from a mixture of Li₂CO₃, K₂CO₃, SrCO₃, Sc₂O₃, and B₂O₃ at a molar ratio of 9:1:1:2:15. The starting materials were thoroughly ground in an agate mortar and transferred to a Pt crucible, and then placed in the center of a programmable temperature furnace. The mixture was melted into solution at 800 °C and kept for 20 h to ensure the solution melt completely and homogeneously. Then the homogenized solution was slowly cooled to 700 °C at a rate of 1°C/h, and finally cooled to room temperature (RT) at a rate of 1.5 °C/h. The colorless, block crystals were observed on the surface of the platinum crucible. For Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄, raw materials of Li₂CO₃, K₂CO₃, BaCO₃, CaCO₃, Sc₂O₃, and B₂O₃ at a molar ratio of 9:1:1:1:2:15 was adopted using the same heating procedure. Small crystals were mechanically selected from the reaction products under a microscope and further characterized by single crystal X-ray diffraction measurement.

Solid-state synthesis

The polycrystalline sample of Li₇SrScB₁₂O₂₄ was obtained by traditional high temperature solid-state reaction. The raw materials of Li₂CO₃ (Aladdin, 99.5 %), SrCO₃ (Aladdin, 99 %), Sc₂O₃ (99.0 %), and B₂O₃ (Aladdin, 98 %) were carefully weighed according to the stoichiometric ratio 3.5:1:1:6 and packed into a corundum crucible after mixed in an agate mortar. First, the raw materials were fully ground and preheated at 500 °C for 24 h. Second, the sample was fully ground again and then heated to 760 °C and kept at this temperature for 4 days with several mixing and grinding during this process. Finally, the polycrystalline sample of Li₇SrScB₁₂O₂₄ was obtained and its purity was verified by powder X-ray diffraction (PXRD) analysis.

The pure phase of Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄ was failed to obtained even if we have tried several different methods, such as changing synthetic methods (two-stage chemical synthesis method, molten salt and sol-gel method), replacing different raw materials, adjusting the molar ratio of the raw materials, etc.

Powder X-ray diffraction

PXRD measurement on the thoroughly ground polycrystalline powder of Li₇SrScB₁₂O₂₄ was carried out with a Bruker D2 Phaser diffractometer equipped with an incident beam monochromator set for Cu K α radiation (λ = 1.5418 Å). Diffraction patterns were taken from 10 to 70 ° with a scan step width of 0.02 ° and a fixed counting time of 1 s per step. The XRD patterns of the powder sample of the title compound agree well with the calculated results (Figure.S1).

Structure determination

The crystal structure of Li₇SrScB₁₂O₂₄ was determined at room temperature using a Bruker D8 Venture single-crystal X-ray diffractometer with Mo-K α radiation (λ = 0.71073 Å). The Bruker suite of software packages was used for the reduction of the diffraction data. Numerical absorption corrections were performed using the SCALE program¹ for area detection and integrated with the SAINT program. The structure was solved with Olex2 and SHELXTL by direct methods.²⁻³ All atoms were refined with anisotropic displacement parameters. The program PLATON was used for verifying possible missing symmetry elements, but no higher symmetries were found.⁴ The integrity and consistency of the crystal structure determination were checked using the check CIF tool (http://checkcif. iucr.org). Detailed information on the structural data is given in Table S1, and the redefined atomic positions, equivalent isotropic displacement parameters and bond valence are listed in Table S2. The information of selected bond lengths and angles is given in Table S3 in the ESI.

UV-Vis-NIR diffuse reflectance spectroscopy

The UV–Vis–NIR diffuse-reflectance spectroscopy data in a wavelength range of 200–2600 nm was recorded at room temperature using the powder samples of Li₇SrScB₁₂O₂₄ on a Shimadzu SolidSpec-3700DUV spectrophotometer. Tetrafluoroethylene was used as a diffuse reflectance standard.

Infrared spectroscopy

Infrared (IR) spectra were recorded on a Shimadzu IR Affinity-11 Fourier transform IR spectrometer in a range from 400 to 4000 cm⁻¹ with a resolution of 1 cm⁻¹. The sample was mixed thoroughly with 500 mg of dried KBr.

Thermal analysis

Thermal gravimetry (TG) and differential scanning calorimetry (DSC) were carried out to examine the thermal stability of $Li_7SrScB_{12}O_{24}$ on a simultaneous NETZSCH STA 449 F3 thermal analyzer instrument under a flowing N_2 atmosphere. The sample was placed in a Pt crucible and heated from 40 to 1000 °C at a rate of 5 °C·min⁻¹.

Table of Contents

- Table S1 Crystal date and structure refinement of $Li_7SrScB_{12}O_{24}$ and $Li_7Ba_{0.6}Ca_{0.4}ScB_{12}O_{24}$.
- Table S2Atomic coordinates and equivalent isotropic displacement parameters ofLi₇SrScB₁₂O₂₄ and Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄.
- Table S3 Selected bond lengths [Å] and angles [deg] for Li₇SrScB₁₂O₂₄.
- Table S4 Basic information of anhydrous borates with B_6O_{14} groups.
- Figure S1 Calculated and experimental powder-XRD patterns of Li₇SrScB₁₂O₂₄.
- Figure S2 Coordination environments of the Li, Sr and Sc atoms.
- Figure S3 Elemental analysis of Li₇SrScB₁₂O₂₄. Energy dispersive X-ray spectroscope (EDS) was performed to verify the presence of the Sr atoms.
- Figure S4 Elemental analysis of Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄. Energy dispersive X-ray spectroscope (EDS) was performed to verify the presence of the Ba and Ca atoms.

	$Li_7Ba_{0.6}Ca_{0.4}ScB_{12}O_{24}.$					
E	mpirical formula	Li ₇ SrScB ₁₂ O ₂₄	$Li_7Ba_{0.6}Ca_{0.4}ScB_{12}O_{24}$			
Fo	ormula weight	694.88	704.08			
Te	emperature	339.00 К	295.00 K			
W	Vavelength	0.71073 Å	0.71073 Å			
С	Crystal system, space	Trigonal,	Trigonal,			
group		R3	R3			
		<i>a</i> = 14.8742(11) (Å) <i>α</i> = 90 °	<i>a</i> = 14.9000(6) (Å) <i>α</i> = 90 °			
U	Init cell dimensions	<i>b</i> = 14.8742(11) (Å) <i>β</i> = 90 °	<i>b</i> = 14.9000(6) (Å) <i>β</i> = 90 °			
		<i>c =</i> 6.5524(9) (Å) <i>γ</i> = 120 °	<i>c</i> = 6.5867(5) (Å) γ = 120 °			
V	/olume	1255.4(3) Å ³	1266.4(14) Å ³			
Ζ		3	3			
C	Calculated density	2.757 g⋅cm ⁻³	2.770 g⋅cm ⁻³			
А	bsorption coefficient	3.736 mm ⁻¹	2.038 mm ⁻¹			
F	(000)	996	1005			
С	Crystal size	$0.22 \times 0.12 \times 0.05 \text{ mm}^3$	$0.12 \times 0.1 \times 0.08 \text{ mm}^3$			
T	heta range for data	3.488 to 27.439 °	3.473 to 27.485 °			
collect	tion					
Li	imiting indices	$-19 \le h \le 18, -18 \le k \le 18, -8 \le l$	$-19 \le h \le 19, -18 \le k \le 13, -8 \le$			
	≤ 8	1≤8	3			
R	Reflections	3114/635 [<i>R</i> _(int) = 0.0706]	2362/631 [<i>R</i> _(int) = 0.0403]			
collect	ted/unique					
C	Completeness to theta	98.1%	96.1%			
R	Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²			
G	Goodness-of-fit on <i>F</i> ²	1.121	1.101			
D	Data / restraints /	635 / 6 / 77	631 / 6 / 78			
param	neters					
Fi	inal <i>R</i> indices $[F_0^2 >$	$R_1 = 0.0413, wR_2 = 0.0883$	$R_1 = 0.0253, wR_2 = 0.0645$			

Table S1 Crystal data and structure refinement for $Li_7SrScB_{12}O_{24}$ and

 $2\sigma(F_o^2)]^a$

R indices (all data)	$R_1 = 0.0480, wR_2 = 0.0924$	$R_1 = 0.0270, wR_2 = 0.0655$
Largest diff. peak and	0.509 and -0.697 e·Å⁻³	0.458 and -0.306 e·Å⁻³
hole		

Table S2. Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Li₇SrScB₁₂O₂₄ and Li₇Ba_{0.6}Ca_{0.4}ScB₁₂O₂₄. U(eq) is defined as

Atom	х	У	Z	U(eq)	BVS
Li(1)	1240(30)	4100(30)	10500(60)	9(6)	1.23
Li(2)	1024(7)	4995(6)	9297(14)	32(2)	0.93
Sr(1)	3333	6667	6667	22(1)	1.94
Sc(1)	3333	6667	1667	5(1)	3.24
B(1)	559(3)	3614(3)	5904(6)	8(1)	2.99
B(2)	1331(3)	5199(3)	3679(6)	8(1)	3.03
O(1)	379(2)	3694(2)	8035(4)	7(1)	2.07
O(2)	1455(2)	4617(2)	5180(4)	11(1)	2.16
O(3)	2060(2)	6218(2)	3561(4)	8(1)	1.96
O(4)	525(2)	4741(2)	2302(4)	10(1)	1.82

one third of the trace of the orthogonalized $U_{ij}\ tensor.^{a,b}$

Atom	x	у	Z	U(eq)	BVS
Li(1)	1023(4)	4988(4)	9302(8)	39(1)	0.92
Li(2)	1245(16)	4082(16)	10450(30)	12(4)	1.23
Ba(1)/Ca(1)	3333	6667	6667	17(1)	2.21
Sc(1)	3333	6667	1667	12(1)	3.28
B(1)	554(2)	3613(2)	5862(3)	13(1)	3.03
B(2)	1324(2)	5192(2)	3636(4)	14(1)	2.99
O(1)	373(1)	3696(1)	7990(2)	12(1)	2.05
O(2)	1445(1)	4613(1)	5142(2)	17(1)	1.81
O(3)	519(1)	4738(1)	2270(2)	16(1)	1.96
O(4)	2047(1)	6210(1)	3503(2)	17(1)	2.21

^a Bond valences calculated with the program Bond Valence Calculator Version 2.00, Hormillosa, C., Healy, S., Stephen, T. McMaster University (1993).

^b Valence sums calculated with the formula: $S_i = \exp[(R_0-R_i)/B]$, where $S_i = valence$ of

bond "*i*" and B = 0.37.

Li(1)-O(1)	1.96(4)	Sr(1)-O(3)#3	2.629(2)
Li(1)-O(1)#12	1.88(4)	Sr(1)-O(3)#2	2.629(2)
Li(1)-O(3)#4	1.96(4)	Sr(1)-O(2)	2.914(2)
Li(1)-O(4)#4	2.04(3)	Sr(1)-O(2)#1	2.914(2)
Li(1)-O(4)#10	2.10(4)	Sr(1)-O(2)#2	2.914(2)
Li(2)-O(1)	1.868(8)	Sr(1)-O(4)#1	2.558(2)
Li(2)-O(2)#3	2.198(9)	Sc(1)-O(3)	2.076(2)
Li(2)-O(3)#4	2.004(9)	Sc(1)-O(3)#1	2.076(2)
Li(2)-O(4)#10	2.072(9)	Sc(1)-O(3)#6	2.076(2)
Sr(1)-O(2)#1	3.087(2)	Sc(1)-O(3)#7	2.076(2)
Sr(1)-O(2)#2	3.087(3)	Sc(1)-O(3)#5	2.076(2)
Sr(1)-O(2)#3	3.087(2)	Sc(1)-O(3)#8	2.076(2)
Sr(1)-O(2)#4	3.087(2)	B(1)-O(1)	1.438(5)
Sr(1)-O(2)	3.087(3)	B(1)-O(1)#11	1.454(4)
Sr(1)-O(2)#5	3.087(2)	B(1)-O(2)	1.496(4)
Sr(1)-O(3)	2.629(2)	B(1)-O(4)#12	1.507(4)
Sr(1)-O(3)#1	2.629(2)	B(2)-O(2)	1.382(5)
Sr(1)-O(3)#4	2.629(2)	B(2)-O(3)	1.356(4)
Sr(1)-O(3)#5	2.629(2)	B(2)-O(4)	1.378(5)
O(1)#11-Li(1)-O(1)	76.7(13)	O(2)#3-Sr(1)-O(2)	69.47(4)
O(1)-Li(1)-O(3)#3	105.2(17)	O(2)#3-Sr(1)-O(2)#2	110.54(4)
O(1)#11-Li(1)-O(3)#3	174(2)	O(2)#2-Sr(1)-O(2)	180.00(8)
O(1)-Li(1)-O(4)#3	125.6(18)	O(2)#1-Sr(1)-O(2)#4	69.47(4)
O(1)-Li(1)-O(4)#16	101.8(15)	O(2)#4-Sr(1)-O(2)#5	180.0
O(1)#11-Li(1)-O(4)#3	110.6(17)	O(3)#4-Sr(1)-O(2)	112.93(7)
O(1)#11-Li(1)-O(4)#16	75.2(13)	O(3)#4-Sr(1)-O(2)#2	67.06(7)
O(1)-Li(2)-O(2)#4	129.7(5)	O(3)#1-Sr(1)-O(2)#5	67.07(7)
O(1)-Li(2)-O(3)#3	107.2(4)	O(3)#1-Sr(1)-O(2)	109.47(7)
O(1)-Li(2)-O(4)#16	106.3(4)	O(3)#3-Sr(1)-O(2)#3	47.46(7)
O(3)#3-Li(2)-O(2)#4	98.3(4)	O(3)#3-Sr(1)-O(2)#1	132.54(7)
O(3)#3-Li(2)-O(4)#16	98.5(4)	O(3)#5-Sr(1)-O(2)#3	70.54(7)
O(4)#16-Li(2)-O(2)#4	112.0(4)	O(3)#2-Sr(1)-O(2)	132.55(7)
O(2)#1-Sr(1)-O(2)#3	180.0	O(3)#3-Sr(1)-O(2)	70.53(7)
O(2)#2-Sr(1)-O(2)#4	110.53(4)	O(3)#5-Sr(1)-O(2)	67.07(7)
O(2)#2-Sr(1)-O(2)#5	69.47(4)	O(3)#1-Sr(1)-O(2)#1	47.45(7)
O(2)#3-Sr(1)-O(2)#4	110.53(4)	O(2)#3-Sr(1)-O(2)	69.47(4)

Table S3. Selected bond lengths [Å] and angles [deg.] for $Li_7SrScB_{12}O_{24}$.

	1		
O(2)#1-Sr(1)-O(2)#5	110.53(4)	O(3)#2-Sr(1)-O(2)#2	47.46(7)
O(2)#3-Sr(1)-O(2)#5	69.47(4)	O(3)-Sr(1)-O(2)#3	112.93(7)
O(2)-Sr(1)-O(2)#5	110.53(4)	O(3)#2-Sr(1)-O(2)#5	70.54(7)
O(2)#1-Sr(1)-O(2)#2	69.46(4)	O(3)-Sr(1)-O(2)#4	70.53(7)
O(2)#1-Sr(1)-O(2)	110.53(4)	O(3)#5-Sr(1)-O(2)#2	112.94(7)
O(2)-Sr(1)-O(2)#4	69.47(4)	O(3)#4-Sr(1)-O(2)#4	47.45(7)
O(2)-Sr(1)-O(2)#5	110.53(4)	O(3)#3-Sr(1)-O(2)#4	67.07(7)
O(2)#1-Sr(1)-O(2)#2	69.46(4)	O(3)#5-Sr(1)-O(2)#4	132.55(7)
O(2)#1-Sr(1)-O(2)	110.53(4)	O(3)#4-Sr(1)-O(2)#1	70.53(7)
O(2)-Sr(1)-O(2)#4	69.47(4)	O(3)#5-Sr(1)-O(2)#1	109.47(7)
O(2)#3-Sr(1)-O(2)	69.47(4)	O(3)#1-Sr(1)-O(3)#3	180.0
O(2)#3-Sr(1)-O(2)#2	110.54(4)	O(3)#2-Sr(1)-O(3)#5	113.52(8)
O(2)#2-Sr(1)-O(2)	180.00(8)	O(3)#4-Sr(1)-O(3)#5	180.0
O(2)#1-Sr(1)-O(2)#4	69.47(4)	O(3)#3-Sr(1)-O(3)#5	113.52(8)
O(2)#4-Sr(1)-O(2)#5	180.0	O(3)#4-Sr(1)-O(3)#1	113.52(8)
O(3)#4-Sr(1)-O(2)	112.93(7)	O(3)-Sr(1)-O(3)#3	113.52(8)
O(3)#4-Sr(1)-O(2)#2	67.06(7)	O(3)#1-Sr(1)-O(3)#2	113.52(8)
O(3)#1-Sr(1)-O(2)#5	67.07(7)	O(3)-Sr(1)-O(3)#2	180.0
O(3)#1-Sr(1)-O(2)	109.47(7)	O(3)#3-Sr(1)-O(3)#2	66.48(8)
O(3)#3-Sr(1)-O(2)#3	47.46(7)	O(3)-Sr(1)-O(3)#4	113.51(8)
O(3)#3-Sr(1)-O(2)#1	132.54(7)	O(3)-Sr(1)-O(2)#5	109.47(7)
O(3)#5-Sr(1)-O(2)#3	70.54(7)	O(3)#2-Sr(1)-O(2)#3	67.07(7)
O(3)#1-Sr(1)-O(2)	109.47(7)	O(3)#3-Sr(1)-O(2)#2	109.47(7)
O(3)#3-Sr(1)-O(2)#3	47.46(7)	O(3)#4-Sr(1)-O(2)#5	132.55(7)
O(3)#3-Sr(1)-O(2)#1	132.54(7)	O(3)#4-Sr(1)-O(2)#3	109.47(7)
O(3)#5-Sr(1)-O(2)#3	70.54(7)	O(3)#3-Sr(1)-O(2)#5	112.93(7)
O(3)#2-Sr(1)-O(2)	132.55(7)	O(3)#1-Sc(1)-O(3)#5	87.92(10)
O(3)#3-Sr(1)-O(2)	70.53(7)	O(3)#1-Sc(1)-O(3)#7	180.0
O(3)#5-Sr(1)-O(2)	67.07(7)	O(3)#8-Sc(1)-O(3)#6	87.92(10)
O(3)#1-Sr(1)-O(2)#1	47.45(7)	O(1)-B(1)-O(1)#12	111.0(3)
O(3)#2-Sr(1)-O(2)#1	112.93(7)	O(1)#12-B(1)-O(2)	110.2(3)
O(3)#5-Sr(1)-O(2)#5	47.46(7)	O(1)-B(1)-O(2)	109.6(3)
O(3)-Sr(1)-O(2)#1	67.07(7)	O(1)#12-B(1)-O(4)#11	110.8(3)
O(3)#1-Sr(1)-O(2)#4	112.93(7)	O(1)-B(1)-O(4)#11	109.1(3)
O(3)#1-Sr(1)-O(2)#2	70.53(7)	O(2)-B(1)-O(4)#11	106.0(3)
O(3)#2-Sr(1)-O(2)#4	109.46(7)	O(3)-B(2)-O(2)	117.3(3)
O(3)-Sr(1)-O(2)#2	132.54(7)	O(3)-B(2)-O(4)	121.8(3)

O(3)#1-Sr(1)-O(2)#3	132.55(7)	O(4)-B(2)-O(2)	120.8(3)
O(3)#7-Sc(1)-O(3)#6	87.93(10)		
O(3)#8-Sc(1)-O(3)#7	87.92(10)		
O(3)-Sc(1)-O(3)#8	92.08(10)		
O(3)-Sc(1)-O(3)#7	92.08(10)		
O(3)-Sc(1)-O(3)#6	180.00(10)		
O(3)-Sc(1)-O(3)#5	87.92(10)		
O(3)#6-Sc(1)-O(3)#5	92.08(10)		
O(3)#8-Sc(1)-O(3)#5	180.0		
O(3)#1-Sc(1)-O(3)	87.92(10)		
O(3)#1-Sc(1)-O(3)#6	92.08(10)		
O(3)#1-Sc(1)-O(3)#8	92.08(10)		
O(3)#7-Sc(1)-O(3)#5	92.08(10)		

Symmetry transformations used to generate equivalent atoms:

#1 -x+y,-x+1,z #2 -x+2/3,-y+4/3,-z+4/3 #3 x-y+2/3,x+1/3,-z+4/3 #4 y-1/3,-x+y+1/3,-z+4/3 #6 -x+2/3,-y+4/3,-z+1/3 #5 -y+1,x-y+1,z #7 x-y+2/3,x+1/3,-z+1/3 #8 y-1/3,-x+y+1/3,-z+1/3 #9 -x+y,-x+1,z-1 #10 x,y,z-1 #11 -x+y-1/3,-x+1/3,z+1/3 #12 -y+1/3,x-y+2/3,z-1/3 #13 -x+y-1/3,-x+1/3,z-2/3 #14 x-y+2/3,x+1/3,-z+7/3 #15 -x,-y+1,-z+2 #16 x,y,z+1 #18 y-1/3,-x+y+1/3,-z+7/3 #17 -y+1/3,x-y+2/3,z+2/3

		Space	B-O	Unit Cell Dimensions		Refer-
NO.	Chemical Formula	Group	Clusters			ence
1	$Ba_6Al_4B_{14}O_{33}$	ΡĪ	[B ₆ O ₁₄]	a = 7.0070(14) (Å) b = 13.880(3) (Å) c = 14.702(3) (Å)	$\alpha = 86.48^{\circ}$ $\beta = 88.99^{\circ}$ $\gamma = 83.46^{\circ}$	5
2	$Ba_3B_6O_{11}F_2$	P21	[B ₆ O ₁₄]	a = 6.5672(4) (Å) b = 8.5035(6) (Å) c = 9.6637(6) (Å)	$\alpha = 90^{\circ}$ $\beta = 101.351^{\circ}$ $\gamma = 90^{\circ}$	6
3	Pb ₆ O(B ₆ O ₁₄)	ΡĪ	[B ₆ O ₁₄]	a = 6.9567 (Å) b = 7.7849 (Å) c = 14.0825 (Å)	$\alpha = 97.275^{\circ}$ $\beta = 100.442^{\circ}$ $\gamma = 103.024^{\circ}$	7
4	$Ba_2B_6O_{11}$	P21/c	[B ₆ O ₁₄]	a = 9.115(1) (Å) b = 7.773(1) (Å) c = 12.696(2) (Å)	α = 90 ° θ =100.325 ° γ = 90 °	8
5	$Pb_3B_6O_{11}F_2$	P21	[B ₆ O ₁₄]	a = 6.414(4) (Å) b = 8.310(6) (Å) c = 9.470(6) (Å)	$\alpha = 90^{\circ}$ $\beta = 101.284^{\circ}$ $\gamma = 120^{\circ}$	9
6	Li ₇ BaAlB ₁₂ O ₂₄	RЗ	[B ₆ O ₁₄]	a = 18.0600(9) (Å) b = 6.9728(6) (Å) c = 6.9728(6) (Å)	$\alpha = 90°$ $\beta = 90°$ $\gamma = 120°$	10
7	Li ₇ SrAlB ₁₂ O ₂₄	R3	[B ₆ O ₁₄]	a = 14.6943(14) (Å) b = 6.6971(8) (Å) c = 6.6971(8) (Å)	α = 90 ° β = 90 ° γ = 120 °	10
8	Li7CaAlB12O24	R3	[B ₆ O ₁₄]	a = 14.5702(14) (Å) b = 6.5040(8) (Å) c = 6.5040(8) (Å)	α = 90° β = 90° γ = 120°	10
9	$Sr_3B_6O_{11}F_2$	P21	[B ₆ O ₁₄]	a = 6.4093(13) (Å) b = 8.2898(17) (Å) c = 9.3656(6) (Å)	$\alpha = 90^{\circ}$ $\beta = 101.51^{\circ}$ $\gamma = 90^{\circ}$	11

Table S4. Basic information of anhydrous borates with B_6O_{14} groups.

Figure S1. Calculated and experimental powder-XRD patterns of Li₇SrScB₁₂O₂₄.

Figure S2. Coordination environments of the Li, Sr and Sc atoms.

Figure S3. Elemental analysis of Li₇SrScB₁₂O₂₄. Energy dispersive X-ray spectroscope (EDS) was performed to verify the presence of the Sr atom.

Figure S4. Elemental analysis of $Li_7Ba_{0.6}Ca_{0.4}ScB_{12}O_{24}$. Energy dispersive X-ray spectroscope (EDS) was performed to verify the presence of the Ba and Ca atoms.

References

- 1 SAINT, Version 7.60A, Madison, WI 2008.
- 2 O. Dolomanov, L. Bourhis, R. Gildea, J. Howard, H. Puschmann, J. Appl. Crystallogr. 2009, 42, 339-341.
- 3 G. Sheldrick, Acta Crystallogr. A, 2008, 64, 112-122.

4 A. Spek, J. Appl. Crystallogr., 2003, 36, 7-13.

5 X. A. Chen, J. Y. Yue, X. N. Chang, W. Q. Xiao, J Solid State Chem., 2017, 245, 174–183.

6 H. W. Yu, H. P. Wu, S. L. Pan, Z. H. Yang, X. Su, F. F. Zhang, *J. Mater. Chem.*,2012, **22**, 9665–9670.

7 H. Yang, C. L. Hu, B. Lv, R. L. Tang, and C. X. Xu, *Chem Select*, 2019, **4**, 3768–3773.

8 L. L. Liu, Y. Yang, X. Y. Dong, C. Lei, S. J. Han, S. L. Pan, *Eur. J. Inorg. Chem.*, 2015, 3328–3335.

9 H. Y. Li, H. P. Wu, X. Su, H. W. Yu, S. L. Pan, Z. H. Yang, Y. Lu, J. Han an d K. R. Poeppelmeier, *J. Mater. Chem. C*, 2014, **2**, 1704–1710.

10 Q. Wei, S. J. Sun, J. Zhang, G. Y. Yang, Chem. Eur. J. 2017, 23, 7614–7620.

11 C. D. McMillen, J. T. Stritzinger, and J. W. Kolis, Inorg. Chem. 2012, 51, 3953–3955.