Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

> All-in-One Cu Mediated Ag assemble Nanocomposites for Photothermal Assisted Photo/Chemical Dynamic Therapy with Hypoxia Relief and Reactive Oxygen Species Enhanced

Ping Zhou^{a,b}, Xianming Zhang^{a,b}, Qinghua Yu^d, Shiyu Yang^{a,b}, Jiashan Xia^{a,b}, Tao Deng^{*a,b}, and Chao Yu^{*a,b,c}

^a Research Center of Pharmaceutical Preparations and Nanomedicine, College of Pharmacy, Chongqing Medical University, Chongqing 400016, China

^b Chongqing Key Laboratory for Pharmaceutical Metabolism Research, College of Pharmacy, Chongqing 400016, China

^c Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center,
College of Pharmacy, Chongqing 400016, China

^d Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400000, China

* Corresponding authors at: College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China

Assoc. Prof. T. Deng: E-mail: 190444@cqmu.edu.cn

Prof. C. Yu: E-mail: yuchao@cqmu.edu.cn

Figure S1. The XPS spectra of Ag@Cu. (A)survey spectrum, (B) Ag 3d, (C) Cu 2p.

Figure S2. Temperature changes of Ag@Cu (100 μ g/ml) under 808 nm laser irradiation with different power densities.

Figure S3. Photothermal effect of Ag@Cu was recorded with the irradiation lasted and then naturally cooled down.

The calculation formula of photothermal conversion efficiency is as follows:

$$\eta = \frac{Q_{sample} - Q_{water}}{I(1 - 10^{-A_{808}})} = \frac{hs(\Delta T_{sample} - \Delta T_{water})}{I(1 - 10^{-A_{808}})}$$

 $\Delta_{sample} - \Delta_{water}$ can be calculated from

$$\Delta_{sample} - \Delta_{water} = \left(T_{\max(sample)} - T_{surr(sample)}\right) - \left(T_{\max(water)} - T_{surr(water)}\right)$$

When $\Delta_{sample} - \Delta_{water}$ was 22.1 °C, I was 2.59 W/cm² and A_{808} was 0.593. According to Figure X, τ_s was determined to be 202.56 s. *hs* was calculated from

$$hs = \frac{m_D C_D}{\tau_s}$$

When m_D was 1 g and C_D was 4.2 J·g^{-1.} °C⁻¹. The photothermal conversion efficiency was calculated to be 23.8%.

Figure S4. Photothermal stability of Ag@Cu. After (a) without or (b) with 660 nm laser irradiation for 10 min, the Ag@Cu was treated with 808 nm laser irradiation for 12 min.

Figure S5. MB degradation by \cdot OH generated by Ag@Cu, which was treated (A) without or (B) with 808 nm irradiation for 10 min, then it was treated with 660 nm laser irradiation.

Figure S6. MTT assay of 4T1 cells (A) and HUVEC cells (B) treated with different concentrations of Ag@Cu (0, 5, 10, 50, 100, 200, 500 and 1000 μ g/mL).

Figure S7. ATP depletion by treaded with different concentrations of Ag@Cu (0, 10, 50, 100, 200, 500 and 1000 μ g/mL).

Figure S8. The ATP content of 4T1 cells treated with different concentrations of Ag@Cu (0, 5, 50, 100, 200 and 300 μ g/mL).

Figure S9. Microscopy images dyed with calcein-AM and PI of 4T1 cells treated with PBS or Ag@Cu ($50 \mu g/mL$) (scale bar = $200 \mu m$).

Figure S10. The body weight of BALB/c mice bearing 4T1 from different treatment groups.

Figure S11. HE images of normal tissues in BALB/c mice after systematic injection of different groups (scale bar = $100 \ \mu m$).