Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information

Carbazole-based near-infrared emitted fluorescence probe for the detection of bisulfite in live animals and real food samples

Zhuye Shang,^a Jianhua Liu,^a Qingtao Meng,^{*a,b} Hongmin Jia,^a Yun Gao,^{*a} Cheng

Zhang,^a Run Zhang^c and Zhiqiang Zhang*^b

^a School of Chemical Engineering, University of Science and Technology Liaoning,
 Anshan, Liaoning Province, 114051, P. R. China.

E-mail: qtmeng@ustl.edu.cn (Q. T. Meng), yuner9111@163.com (Y. Gao), Tel.: +86-412-5929637

^b Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan, Liaoning Province 114051, PR China.

E-mail address: zzq@ustl.edu.cn (Z. Q. Zhang), Tel.: +86-412-5928002

 ^c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia 4072, Australia

Materials

9-Phenyl-9H-carbazol-3-ylboronic acid, 5-bromothiophene-2-carbaldehyde, 1,3indanedione and tetrabutylammonium cyanide, dithiothreitol, thioglycol and mercaptopurine were received from Aladdin reagent Co. (Shanghai, China). Potassium carbonate (K_2CO_3), hydrogen peroxide (H_2O_2), piperidine, anions (sodium salts), hypochlorite (NaOCl), thiophenol and sodium cetyltrimethylammonium bromide (CTAB) were purchased from Sinopharm Chemical Reagent Co., Ltd. (China). All of the experimental live nude mice (6 to 8-week-old) and zebrafish were obtained from Liaoning Changsheng Biotechnology Co., Ltd., and the experiments were performed in compliance with the relevant laws and guidelines. Unless otherwise stated, solvents and reagents were of analytical grade from commercial suppliers and were used without further purification.

Apparatus

¹H NMR and ¹³C NMR spectra were recorded with an AVANCE 400 MH_Z spectrometer (Bruker) with chemical shifts reported as ppm (in Chloroform-*d*, DMSO-*d*₆ and D₂O, TMS as an internal standard). Mass spectra were recorded on an Agilent 6530 QTOF spectrometer. Absorption spectra were tested with a Perkin Elmer Lambda 900 UV/VIS/NIR spectrophotometer. Fluorescence spectra were recorded with a Spectrofluorometer FS5 luminescence spectrometer. All pH measurements were made with an OHAUS Starter 3100/f meter. Imaging of HSO₃⁻ in zebrafish and mice were performed on a SPECTRAL Ami Imaging Systems (Spectral Instruments Imaging, LLC, Tucson, AZ) with an excitation filter 500 nm and an

emission filter 710 nm. Amiview Analysis software (Version 1.7.06) was used to calculate fluorescence intensity in region of interest (ROI), and values are presented as the mean \pm SD for each group of three experiments.

Quantum yield measurement.

The relative fluorescence quantum yields of **QPM** before and after reacting with HSO_3^- were determined by using fluorescein as the reference ($\Phi_f = 0.85$ in 0.1 M NaOH aqueous solutions). After the measurements of UV-Vis and fluorescence spectra (λ_{ex} =490 nm), the quantum yield of the corresponding compounds were determined using the equation^{S1}.

$$\Phi_{\text{unk}} = \Phi_{\text{std}} \frac{(F_{\text{unk}}/A_{\text{unk}})}{(F_{\text{std}}/A_{\text{std}})} \left(\frac{\eta_{\text{unk}}}{\eta_{\text{std}}}\right)^2$$

Where Φ_{std} , F_{std} , A_{std} , and η_{std} are the quantum yield, integrated fluorescence intensity, absorbance, and refraction of the standard solution, respectively. Φ_{unk} , F_{unk} , A_{unk} , and η_{unk} represent the quantum yield, integrated fluorescence intensity, absorbance, and refraction of the sample solution, respectively. All of the spectroscopic measurements were performed in triplicate and averaged.

(1) Calculation of fluorescence quantum yield (Φ_1) of **QPM**:

The measured data of **QPM** were $\Phi_{std}=0.85$, $F_{std}=165646394.50$, $A_{std}=0.2849$, $\eta_{std}=1.3812$, $F_{unk}=108469230.27$, $A_{unk}=0.2993$ and $\eta_{unk}=1.3853$, respectively. Put the above data into the formula and calculate $\Phi_1=0.5329$.

(2) Calculation of fluorescence quantum yield (Φ_2) of **QPM-SO**₃H:

The measured data of **QPM-SO**₃H were Φ_{std} =0.85, F_{std} =165646394.5, A_{std} =0.2849, η_{std} =1.3812, F_{unk} =219667.32, A_{unk} =0.0391 and η_{unk} =1.3546, respectively. Put the above data into the formula and calculate Φ_1 =0.0079.

MTT assay of cytotoxicity of QPM in A549 cells

The cytotoxicity of **QPM** to live A549 cells was investigated by MTT assays^{S2}. The following formula was used to calculate the viability of cell growth: Viability (%)=(mean of absorbance value of treatment group-blank)/(mean absorbance value of control-blank)×100.

Fig. S1 ¹H NMR of **QPM** (DMSO-*d*₆, 400 MHz).

Fig. S4 HR-MS of **QPM** (10 μ M) in the presence of HSO₃⁻ in Tris buffer solution (Tris:DMSO=7:3, pH=7.4, containing 1 mM CTAB).

Theoretical computations

The ground state structures of **QPM** and **QPM**-SO₃H were optimized using the density functional theory (DFT) with the Beck's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP). All atoms were treated with 6-31G(d,p) basis set. All quantum chemistry calculations were performed using the Gaussian 16 package.

Fig. S5 (A) Molecular structure of **QPM**, and (B) optimized molecular geometry of **QPM** in the ground state (S_0) obtained from DFT calculations at B3LYP//6-31G(d,p) level of theory.

Coordinates (ground state S ₀)						
Center	Atomic	Forces(Hartrees/Bohr)				
Number	Number	X	Y	Z		
1	6	-0.000002693	-0.000003431	0.000000188		
2	6	-0.000001361	0.000003464	0.000001056		
3	6	0.000004169	-0.000001227	-0.000000776		
4	6	-0.000006465	-0.000000831	0.000001469		
5	6	-0.000004745	0.000000755	-0.000000249		
6	6	0.000003905	0.00000896	-0.00000829		
7	7	0.000010728	0.000019077	0.000000482		
8	6	-0.000012214	-0.000011440	0.000002363		
9	6	0.000007267	0.000000851	0.000001030		
10	6	0.000002786	0.000000590	-0.000001038		
11	6	-0.000001562	0.00000748	0.000000843		
12	6	0.000001491	-0.000001337	-0.000001293		
13	6	-0.000001760	0.000000975	-0.000001060		
14	6	0.000002917	-0.000013654	-0.000001435		
15	6	-0.000001584	0.000003021	0.000001550		
16	6	0.000000417	-0.000001018	0.000001426		
17	6	0.00000878	-0.000000995	0.000001402		

Table S1 Cartesian coordinates of **QPM** in the ground state (S₀).

18	6	0.000000393	-0.000000542	0.000000661
19	6	0.000000498	0.000002140	0.000001031
20	6	-0.000004594	-0.000001101	-0.000001356
21	16	0.000004681	0.000003211	-0.000000312
22	6	0.00000827	-0.000001619	0.000004255
23	6	-0.000000129	0.000001361	-0.000001491
24	6	-0.000000731	-0.000000925	-0.000001247
25	6	-0.000002742	-0.000002336	-0.000002368
26	6	0.000002631	0.000002742	-0.000003528
27	6	-0.000001120	-0.000004307	-0.000000568
28	6	0.00000344	0.000003708	0.000001481
29	6	-0.000001451	-0.000002941	0.000001287
30	6	0.000002728	0.000002264	0.000000312
31	6	-0.000003665	0.000001635	-0.000002072
32	6	0.000001848	-0.000003680	-0.000000136
33	6	0.000002343	0.000004225	-0.000000194
34	6	-0.000003199	-0.00000365	-0.000001512
35	8	-0.000000276	-0.000001064	-0.00000067
36	8	-0.000000468	0.000002148	-0.000001628
37	1	0.00000088	0.000000266	-0.00000399
38	1	0.000000005	-0.00000820	0.000000053
39	1	-0.000000556	-0.000000350	0.000000835
40	1	-0.00000367	-0.000000041	-0.00000229
41	1	0.00000845	-0.00000021	0.000000567
42	1	0.000000145	-0.000001094	-0.000000179
43	1	-0.000000664	-0.000000206	-0.00000038
44	1	0.00000375	-0.00000268	0.000000628
45	1	0.000000714	0.00000047	0.000001412
46	1	0.000000441	-0.00000364	0.000001684
47	1	0.000000165	-0.000000760	0.000001169
48	1	0.000000191	-0.000000773	0.000000659
49	1	-0.000000624	-0.00000035	-0.000000666
50	1	-0.000000586	0.000000755	-0.000000769
51	1	0.00000095	0.00000536	-0.000001492
52	1	0.00000020	0.000000500	-0.000000594
53	1	-0.00000336	0.000001109	-0.000000515
54	1	-0.000000275	0.000000117	-0.000000126
55	1	0.00000231	0.000000404	0.00000320

Fig. S6 (A) Molecular structure of QPM-SO₃H, and (B) optimized molecular geometry of QPM-SO₃H in the ground state (S₀) obtained from DFT calculations at B3LYP//6-31G(d,p) level of theory.

Coordinates (ground state S ₀)					
Center	Atomic	Forces(Hartrees/Bohr)			
Number	Number	Χ	Y	Ζ	
1	6	0.000086206	-0.000097580	-0.000040240	
2	6	0.000036091	0.000129648	-0.000011567	
3	6	0.000134083	0.000094185	-0.000003643	
4	6	-0.000331713	0.000196627	0.000227075	
5	6	0.000105981	-0.000244753	0.000345223	
6	6	-0.000102467	-0.000042826	-0.000239690	
7	7	-0.000084028	0.000033936	0.000375645	
8	6	0.000547240	0.000599816	-0.000009580	
9	6	-0.000178439	0.000285314	-0.000439098	
10	6	-0.000050290	0.000021810	0.000112656	
11	6	0.000021008	-0.000365910	-0.000081372	
12	6	-0.000181714	-0.000044448	-0.000102771	
13	6	0.000063293	-0.000161610	0.000201165	
14	6	-0.000146194	-0.000786052	-0.000565446	
15	6	-0.000100779	-0.000040123	0.000024927	
16	6	-0.000063514	0.000047217	0.000031086	
17	6	-0.000039241	0.000130766	0.000023503	
18	6	0.000191598	-0.000040665	0.000009296	
19	6	0.000173592	0.000040991	0.000046261	
20	6	0.000639446	0.000106654	-0.000146534	
21	16	-0.000338508	0.000772302	0.000296345	
22	6	-0.000147084	-0.000381415	0.000429400	
23	6	0.000252200	-0.000157797	0.000075888	
24	6	0.000079193	0.000164993	-0.000134023	
25	6	-0.000655531	-0.000329924	-0.000375630	
26	6	0.000124184	0.000029624	0.000006026	
27	6	0.000116724	0.000163546	0.000346176	

Table S2 Cartesian coordinates of $\ensuremath{\textbf{QPM-SO_3H}}$ in the ground state (S_0).

28	6	0.000021425	0.000268854	-0.000021835
29	6	-0.000143015	0.000200717	0.000135274
30	6	0.000277367	-0.000635531	-0.000486060
31	6	0.000139515	-0.000072882	-0.000128212
32	6	-0.000058585	-0.000138103	0.000081326
33	6	-0.000008781	-0.000172638	0.000117683
34	6	-0.000010333	0.000088616	-0.000084139
35	8	-0.000155546	0.000346667	0.000339740
36	8	-0.000260626	0.000048389	-0.000210769
37	16	0.000355687	-0.000427344	0.000349200
38	8	-0.000152972	0.000157242	-0.000203823
39	8	-0.000268989	0.000291707	0.000002285
40	8	0.000334778	0.000100172	-0.000101311
41	1	-0.000011979	0.000024309	-0.000015743
42	1	-0.000017863	-0.000008514	0.000022203
43	1	0.000029901	-0.000040642	-0.000067518
44	1	-0.000013454	0.000017034	0.000048968
45	1	-0.000074655	-0.000065465	-0.000034801
46	1	-0.000145302	0.000063349	-0.000059161
47	1	0.000153299	0.000138029	0.000066109
48	1	-0.000001297	0.000052252	0.000011498
49	1	0.000024912	-0.000022087	-0.000032201
50	1	-0.000015122	-0.000005518	-0.000006705
51	1	-0.000028302	-0.000043969	-0.000001550
52	1	-0.000041471	0.000026103	0.000030654
53	1	0.000027671	0.000011575	0.000023866
54	1	-0.000046644	-0.000165514	-0.000038023
55	1	0.000104949	0.000126129	-0.000173731
56	1	0.000186906	-0.000106686	0.000159647
57	1	-0.000045966	-0.000009112	-0.000012467
58	1	-0.000009269	0.000027330	0.00000108
59	1	0.000017984	-0.000002649	-0.000014249
60	1	0.000038561	0.000006383	-0.000004156
61	1	-0.000354124	-0.000202530	-0.000093186

Fig. S7 Fluorescence changes of QPM (10 μ M) at different time in Tris buffer solution (Tris:DMSO=7:3, pH=7.4, containing 1 mM CTAB). The intensities were recorded at 710 nm, excitation was performed at 490 nm.

Fig. S8 The viability of A549 cells incubated with QPM (0–30 μ M) for 24 h.

Fig. S9 The photoexcited decay curves of QPM.

Probes	Emission wavelength	Detection limit	Response time	Detection of HSO ₃ ⁻ in live animals	Detection of HSO ₃ [–] in food samples	Ref.
BFO-SFT	515 nm	152 nM	20 min	Mouse	No	S3
NG-TCF	550 nm/670 nm	1.53 μM	7 min	No	No	S4
probe 1	530 nm/590 nm	0.37 μΜ	30 s	Zebrafish	Yes	S5
РСРТ	568 nm/648 nm	80.5 nM	15 min	No	No	S 6
NBIS	534 nm/610 nm	16.2 nM	12 min	No	No	S7
BCVTI	608 nm	3.3 nM	4 min	No	No	S 8
HDI	460 nm/565 nm	80 nM	2 min	No	No	S9
DQ	620 nm	0.11 μΜ	15 s	No	No	S10
CMQ	640 nm	15.6 nM	5 s	Zebrafish	No	S11

Table S3. Comparison of this work with reported fluorescent probes for HSO₃⁻ detection.

probe 1	450 nm/594 nm	3.21 µM	2.5 min	No	No	S12
Ru-azo	635 nm	0.69 µM	60 min	No	No	S13
probe 1	514 nm	22.8 nM	10 s	No	No	S14
MS-Bindol	490 nm	0.2 nM	90 s	No	Yes	S15
MITO- TPE	455 nm	27.22 μΜ	20 s	Zebrafish	No	S16
Нсу-Мо	596 nm	80 nM	30 s	Mouse	No	S17
RBC	456 nm/583 nm	6.6×10 ⁻⁸ M	35 s	No	No	S18
TBQN	514 nm	3.19×10⁻ ⁸ M	3 min	No	No	S19
Q5	485 nm/650 nm	89 nM	within 0.5 h	No	No	S20
QPM	710 nm	58 nM	45 s	Zebrafish/mouse	Yes	This work

References:

- [S1]H. Feng, Y. Wang, J. Liu, Z. Zhang, X. Yang, R. Chen, Q. Meng and R. Zhang, J. Mater. Chem. B, 2019, 7, 3909–3916.
- [S2]F. Zhou, H. Feng, H. Li, Y. Wang, Z. Zhang, W. Kang, H. Jia, X. Yang, Q. Meng and R. Zhang, ACS Omega, 2020, 5, 5452–5459.
- [S3]M. Guo, L. Wei, J. Shen, X. Liu, M. Abbas, Y. Yang, C. Xu, B. Wang and H. Zhu, Dyes Pigm., 2022, 202, 110261.
- [S4]L. Yang, N. Yang, P. Gu, Y. Zhang, X. Gong, S. Zhang, J. Li, L. Ji and G. He, *Bioorg. Chem.*, 2022, **123**, 105801.
- [S5]X. Li, J. Yan, W. Wu, X. Zhao, Y. Wang, Y. Fan and Z. Xu, *Microchem. J.*, 2022, 181, 107653.
- [S6]W. Sun, N. Li, Z. Li, Y. Yuan, J. Miao, B. Zhao and Z. Lin, Dyes Pigm., 2020,

182, 108658.

- [S7]Z. Li, X. Cui, Y. Yan, Q. Che, J. Miao, B. Zhao and Z. Lin, *Dyes Pigm.*, 2021, 188, 109180.
- [S8]F. Li, L. Zou, J. Xu, F. Liu, X. Zhang, H. Li, G. Zhang and X. Duan, J. Photoch. Photobio. A, 2021, 411, 113201.
- [S9]L. Wang, W. Yang, Y. Song, Y. Gu and Y. Hu, Spectrochim. Act A, 2020, 225, 117495.
- [S10] C. Zhang, L. Han, Q. Liu, M. Liu, B. Gu and Y. Shen, Spectrochim. Acta A, 2021, 253, 119561.
- [S11] X. Bao, X. Cao, Y. Yuan, B. Zhou and C. Huo, J. Agric. Food Chem., 2021,
 69, 4903–4910.
- [S12] X. Mu, J. Zhu, L. Yan and N. Tang, *Luminescence*, 2021, **36**, 923–927.
- [S13] W. Zhang, X. Xi, Y. Wang, Z. Du, C. Liu, J. Liu, B. Song, J. Yuan and R. Zhang, *Dalton Trans.*, 2020, 49, 5531–5538.
- [S14] M. Wu, X. Wei, Y. Wei, R. Sun, Y. Xu and J. Ge, Anal. Methods, 2019, 11, 4334–4340.
- [S15] X. Zhang, L. Zhang, S. Liu, X. Zhu, P. Zhou, X. Cheng, R. Zhang, L. Zhang and L. Chen, J. Hazard. Mater., 2022, 423, 127179.
- [S16] X. Yang, J. Tang, D. Zhang, X. Han, J. Liu, J. Li, Y. Zhao and Y. Ye, Chem. Commun., 2020, 56, 13217–13220.
- [S17] R. Zhou, G. Cui, Y. Hu, Q. Qi, W. Huang and L. Yang, RSC Adv., 2020, 10, 25352–25357.

- [S18] D. Yang, X. He, X. Wu, H. Shi, J. Miao, B. Zhao and Z. Lin, J. Mater. Chem. B, 2020, 8, 5722–5728.
- [S19] Y. Liu, L. Wu, Y. Dai, Y. Li, S. Qi, J. Du, Q. Yang, H. Xu and Y. Li, Anal. Methods, 2021, 13, 3667-3675.
- [S20] J. Zhu, F. Qin, D. Zhang, J. Tang, W. Liu, W. Cao and Y. Ye, New J. Chem., 2019, 43, 16806–16811.