β-D-Glucose pentaacetate derivative as an efficient phase selective gelator for oil spill recovery

Gang-Ren Huang,^{‡a} Xue-Wen Shi,^{‡a} Ya-Min Wu,^a Ban-Peng Cao,^{*a} Hiroaki Okamoto^b and Qiang Xiao^{*a}

^a Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China. Email: caobanpeng@126.com, xiaoqiang@tsinghua.org.cn

^b Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan. Email: <u>oka-moto@yamaguchi-u.ac.jp</u>

‡ These authors contributed equally to this work and should be considered co-first authors.

L

Index

Figure S1. Oleogel (stable to inversion) of compound 1 at MGC1
Table S1. The thermally reversible gel-sol transition temperature of
oleogel at different concentration1
Figure S2. Plots of Tgel versus Concentration of compound 1 (wt%)
in tested oils2
Figure S3. Plots of lnC versus 1/Tgel in tested oils2
Table S2. Fitting parameters from the linear fit curve of the normalized
values of the mean impedance magnitude for InC and 1/Tgel tested at
four kind of oils
Figure S4. Selective gelation of compound 1 in oil-aqueous mixtures
systems. From left to right (a) mineral oil, (b) paraffin oil, (c) diesel oil,
(d) pump oil, (e) MS, and (f) DMS3
Figure S5. Mineral oil oleogel (2g, 2 wt%) of compound 1 holding the
weight of 120 g of water in an inverted round-bottomed flask4
Figure S6. UV-Vis absorption spectral changes of compound 1 in
solution and gel phase4
Figure S7. Fourier transform infrared spectroscopy (FTIR) spectra5
Figure S8. NMR spectra

Figure S1. Oleogel (stable to inversion) of compound 1 at MGC. From left to right (a) DMS, (b) mineral oil, (c) pump oil, (d) paraffin oil, (e) diesel oil, and (f) MS.

 Table S1. The thermally reversible gel-sol transition temperature of oleogel at

 different concentration

Concentration	n 5 wt%	4 wt%	3 wt%	2 wt%	1 wt%
Solvent	5	1 11 270	0 11(7)	2 110/0	2 100/0
DMS	153.7°C	146.4°C	139.6°C	127.5°C	117.3°C
Mineral oil	148.3°C	141.5°C	134.7°C	123.3°C	106.3°C
Paraffin oil	144.2°C	138.3°C	131.4°C	119.5°C	101.8°C
MS	136.9°C	129.6°C	118.7°C	102.4°C	81.6°C

Figure S2. Plots of Tgel versus Concentration of compound 1 (wt%) in tested oils

Figure S3. Plots of lnC versus 1/Tgel in tested oils. (a) DMS, (b) Mineral oil, (c) Paraffin oil and (d) MS

Fitting	DMS	Mineral oil	Paraffin oil	MS			
parameters							
Equation	$y = a^*x + b$						
Intercept	12.06335 ± 0.30277	11.84517 ± 0.20591	11.37837 ± 0.32368	$0.00182 \pm 1.77606 \text{E-5}$			
Slope	$\textbf{-6227.16438} {\pm 123.53305}$	$\textbf{-}6135.12092 \pm 83.01001$	$-5890.67019 \pm 129.24799$	$\text{-}2.40353\text{E-}4 \pm 5.43539\text{E-}6$			
R-Square	0.00892	0.00045	0.00056	0.00047			
(COD)	0.99882	0.99945	0.99856	0.99847			
Adj. R-Square	0.99843	0.99927	0.99808	0.99796			

Table S2. Fitting parameters from the linear fit curve of the normalized values of the mean impedance magnitude for InC and 1/Tgel tested at four kind of oils

Figure S4. Selective gelation of compound 1 in oil-aqueous mixtures systems. From left to right (a) mineral oil, (b) paraffin oil, (c) diesel oil, (d) pump oil, (e) MS, and (f) DMS

Figure S5. Mineral oil oleogel (2g, 2 wt%) of compound 1 holding the weight of 120 g of water in an inverted round-bottomed flask

Figure S6. UV-Vis absorption spectral changes of compound 1 in solution and gel phase

Figure S7. Fourier transform infrared spectroscopy (FTIR) spectra. Xerogel obtained from mineral oil.

Figure S8. NMR spectra

