Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Two-step synthesis of a-NiCu(OH)₂CO₃/Na₃NiCuCO₃PO₄: A battery-type electrode for pseudocapacitor applications

Nishchith B S^a, Yogesh Kalegowda^a*Ashoka S^b, Ganesan Sriram^c, Mahaveer D Kurkuri^c, Manjunatha Channegowda^{d,e}

^aDepartment of Physics, School of Engineering, Dayananda Sagar University, Bengaluru, India-560068 ^b Department of Chemistry, School of Applied Sciences, REVA University, Bengaluru, India-560064 ^cCentre for Nano and Material Sciences, JAIN University, Jain Global Campus, Bengaluru, India-562112 ^dDepartment of Chemistry, RV College of Engineering, Bengaluru, India-560059 ^eVisvesvaraya Technological University, Belagavi,India-590018 *Corresponding author.

E-mail address: yogesh-phy@dsu.edu.in

Fig. S1. FESEM image of a sample Ni:Cu-100:0 (Na₃NiCO₃PO₄).

Fig. S2. N₂ adsorption-desorption isotherms of the Na₃NiCuCO₃PO₄ samples before and after KOH etching.

Table S1. Specific surface area, pore size and pore volume of the as-prepared and surface modified Na₃NiCuCO₃PO₄ particles.

Compound	pore size (nm)		pore volume (cm ³ /g)		
	As prepared Surface		As	Surface	
		modified	prepared	modified	
Ni:Cu-100:0	15.02	4.09	0.010679	0.1301	
Ni:Cu-80:20	7.02	2.99	0.007775	0.0958	
Ni:Cu-60:40	8.19	3.37	0.008703	0.0292	
Ni:Cu-40:60	9.10	0.00	0.006260	0.0000	

Table S2. The concentration of analyte in 1 M KOH electrolyte solution after Na₃NiCuCO₃PO₄ (Ni:Cu-80:20) electrode immersed in KOH solution for different time.

Technique	Element (in	Interaction with 1 M KOH solution		
1	ppm)	20 min	60 min	120 min
	Р	34.7	37.3	41.1
ICD OES	Na	500	543	587
ICF-OES	Ni	0.66	0.89	0.93
	Cu	2	2.3	2.7
IS 3025 (P- 51) 2001 titration technique	С	1100	1318	1212

Fig. S3. Comparison of the XRD patterns of the Na₃NiCuCO₃PO₄ before and after KOH etching.

Fig. S4. FESEM elemental mapping of different elements at different electrochemical processing state.

Fig. S5. The survey spectra acquired for Na₃NiCuCO₃PO₄ samples after KOH etching.

Fig. S6. High resolution C 1S spectrum of a Ni:Cu-80:20+KOH sample.

Elements	1 M KOH etched samples					
(in at. %)	Ni:Cu-100:00+KOH	Ni:Cu-80:20+KOH	Ni:Cu-60:40+KOH	Ni:Cu-40:60+KOH		
Na 1 <i>s</i>	-	0.85	3.21	0.98		
Ni 2 <i>p</i>	12.02	5.25	7.45	7.51		
Cu 2p	-	0.31	1.00	2.98		
C 1 <i>s</i>	19.63	44.84	37.26	39.16		
P 2 <i>p</i>	-	2.47	6.42	3.52		
O 1s	37.73	46.28	44.66	45.87		

Table S3. XPS analysis data of various elements present in the KOH etched samples.

	Charged State					
Species	Relative peak positions (in eV)	FWHM (in eV)	% contributions	Total %		
Ni ⁰	852.5	1.0	0.27			
	856.2	2.5	4.06	5.6		
	858.6	1.8	1.27			
NiO	853.7	1.5	1.01			
	855.4	3.2	1.33			
	860.8	3.9	2.30	5.86		
	863.9	2.0	1.22			
$Ni(OH)_2$	854.8	1.1	2.69			
	855.7	2.3	22.32			
	857.6	1.6	3.69	88.54		
	860.3	3.0	0.68			
	861.5	4.6	22.01			
	866.3	3.0	37.15			

Table S4. Spectral fitting parameters for Ni $2p_{3/2}$: Relative peak positions, FWHM and % contributions for Ni⁰ and Ni²⁺ GS envelopes for Ni:Cu-80:20+KOH sample.

Fig. S7. CV profiles of KOH etched $Na_3NiCuCO_3PO_4$ samples in 1 M KOH solution obtained at 50 mV/s scan rate.

Fig. S8. The cycling stability of Ni:Cu-80:20+KOH in 1 M KOH electrolyte at 50 Ag⁻¹ for 40000 cycles.

Fig. S9. (a) The Nyquist plots for the KOH etched samples before and after 15000 cycles at 10 Ag⁻¹.

Table S5. EIS fitting results for different KOH etched Na₃NiCuCO₃PO₄ samples in 1 M KOH solution before charge-discharge cycling.

Materials	R _s (Ωcm²)	R _{ct} (Ωcm ²)	$W_{\Omega}(\Omega cm^2)$	CPE _{DL} (µFcm ⁻²)
Ni:Cu-80:20+KOH	1.50	3.85	0.01037	94.85
Ni:Cu-60:40+KOH	2.32	12.11	0.003379	153.9
Ni:Cu-40:60+KOH	3.59	35.99	0.007009	98.81

Electrode Materials	Electrolyte	Specific Capacitance	Cycles (5 A/g)	Retention	Energy Density of SCs	Power Density of	References
		(F/g) at 1 A/g	(0116)	(/*)	(Wh/Kg)	SCs (W/Kg)	
NiCu(OH) ₂ CO ₃	6 M KOH	476	2000	88	48.55	541	1
Ni-Cu oxides II rGO	1 М КОН	197 (0.5 A/g)			49	1816	2
(Ni _{0.89} Cu _{0.11}) ₂ (OH) ₂ CO ₃ II AC	2 М КОН	96.06	4000	70.8	21.7	8407.4	3
NiCu- hybrid II AC	1 М КОН	2420 mC/cm ² (2 mA/cm ²)			420 µWh/cm ²	2297 μW/cm ²	4
NiCu(OH) ₂ CO ₃ II AC	2 М КОН	163.7 (0.6 A/g)	5000 (2 A/g)	88.8	19.5	3789.5	5
NiCu(CO ₃)(OH) ₂ II graphene	1 М КОН	758.9 mA h g ⁻¹ (3 A/g)	5000 (3 A/g)	87.2	26.7	2534	6
MoS ₂ /NiCo(OH) ₂ C O ₃ II AC	2 М КОН	1296	2000 (1 A/g)		16.4	375	7
Co/Ni hydroxide/CNT paper	6 М КОН	1497 (0.5 A/g)	5,000		-	-	8
PAN@NiCu(CO ₃) (OH) ₂ II graphene	2 М КОН	870 mAh g ⁻¹ (3 A/g)	5000 (1 A/g)	90.1	90	835	9
core/shell Na ₃ NiCuCO ₃ PO ₄	1 М КОН	2647.9	40000	79	30.6	1555	This work

Table S6. Comparison of electrochemical performance of Ni-Cu composite materials based asymmetric supercapacitors

Fig. S10. (a) GCD curves of single, two and four SSCs in series at current density 1 A/g (b) photograph of tandem (four cells in series) SC powering the 6V DC motor fan.

REFERENCES

- 1. X. Zheng, Y. Ye, Q. Yang, B. Geng and X. Zhang, Ultrafine nickel–copper carbonate hydroxide hierarchical nanowire networks for high-performance supercapacitor electrodes, *Chemical Engineering Journal*, 2016, **290**, 353-360.
- 2. L. Zhang and H. Gong, Unravelling the correlation between nickel to copper ratio of binary oxides and their superior supercapacitor performance, *Electrochimica Acta*, 2017, **234**, 82-92.
- 3. P. W. Yuan, S. H. Guo, S. Q. Gao, J. Wang, W. Q. Chen, M. Li, K. Y. Ma, N. Wang, F. Liu and J. P. Cheng, Influence of Ni/Cu ratio in nickel copper carbonate hydroxide on the phase and electrochemical properties, *Journal of Alloys and Compounds*, 2019, **780**, 147-155.
- 4. J. Zhu, L. Wei, Q. Liu and X. Kong, Room-temperature preparation of amorphous CuNi-hybrid nanorod array as a fast battery-type electrode for high performance supercapacitor, *Materials Chemistry and Physics*, 2020, **247**, 122786.

- 5. A. Bera, A. Kumar Das, A. Maitra, R. Bera, S. Kumar Karan, S. Paria, L. Halder, S. Kumar Si and B. Bhusan Khatua, Temperature dependent substrate-free facile synthesis for hierarchical sunflower-like nickel–copper carbonate hydroxide with superior electrochemical performance for solid state asymmetric supercapacitor, *Chemical Engineering Journal*, 2018, **343**, 44-53.
- 6. D. Lee, H. W. Lee, N. M. Shinde, J. M. Yun, S. Mathur and K. H. Kim, Synthesis of nickel–copper composite with controllable nanostructure through facile solvent control as positive electrode for high-performance supercapacitors, *Dalton Transactions*, 2020, **49**, 13123-13133.
- A. Y. Chen, H. H. Liu, P. Qi, X. F. Xie, M. T. Wang and X. Y. Wang, Nanosheet-assembled 3D flower-like MoS2/NiCo(OH)2CO3 composite for enhanced supercapacitor performance, *Journal* of Alloys and Compounds, 2021, 864, 158144.
- 8. F. Tan, H. Chen, R. Yuan, X. Zhang and D. Chen, Co-Ni Basic Carbonate Nanowire/Carbon Nanotube Network With High Electrochemical Capacitive Performance via Electrochemical Conversion, 2021, **9**.
- D. Lee, A. Verma, K. Lê, T. Fischer, K. H. Kim and S. Mathur, Hybrid nanostructured PAN@ NiCu (CO3)(OH) 2 composite for flexible high-performance supercapacitors, *Journal of Materials Research*, 2021, 1-15.