Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

1 Supporting Information

2	
3	Hydrophobically modified mesoporous silica supported Pt as a dual-function of
4	adsorbent buffer-catalysis for toluene removal under low-temperature
5	
6	Mu Zhou ^{a, b} , Shuangde Li ^{b*} , Shaohua Chai ^{b, c} , Tao Wang ^{b, d} , Linfeng Nie ^b ,
7	Yunfa Chen ^{b, c*}
8	^a Beijing Institute of Petrochemical Technology, Beijing 102617, PR China
9	^b State Key Laboratory of Multiphase Complex Systems, Institute of Process
10	Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
11	^c College of Materials Science and Opto-Electronic Technology, University of
12	Chinese Academy of Sciences, Beijing 100049, PR China
13	^d College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR
14	China
15	
16	
17	*Author to whom correspondence should be addressed
18	Shuangde Li, email: sdli@ipe.ac.cn
19	Yunfa Chen, email: chenyf@ipe.ac.cn

Figure S2. Sem images of (a) SiO₂-350, (b) 3.0Pt/SiO₂, (c)3.0Pt/SiO₂–H, and EDS

3.0Pt/SiO₂-H.

images of (d-g) Si, O, Pt elements for 3.0Pt/SiO₂, and (h-l) Si, O, Pt, F elements of

Figure S4. The cyclability of adsorption and desorption capacity for 3.0Pt/SiO₂-H

41

43

42 Figure S5. The cyclability of catalytic performance for 3.0Pt/SiO₂-H at 130 °C

44 Table S1

45 Binding energy and area percentages of Pt in the samples analyzed by XPS spectra

Cotolyst	Binding energy/eV						Area/%		
	$Pt^{0}4f_{7/2}$	$Pt^{2+}4f_{7/2}$	$Pt^{4+}4f_{7/2}$	Pt ⁰ 4f _{5/2}	$Pt^{2+}4f_{5/2}$	$Pt^{4+}4f_{5/2}$	Pt ⁰ 4f	$Pt^{2+}4f$	Pt ⁴⁺ 4f
3.0Pt/SiO ₂	70.7	71.4	73.8	74.0	74.7	77.1	25.2	46.3	28.5
3.0Pt/SiO ₂ -H	70.0	70.7	73.1	73.3	74.0	76.4	23.1	50.8	26.1

46

47