Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting information

Comparative study on proton conductivity of a polypyridinyl multicarboxylate-based hydrogen-bonded organic framework and related chitosan composite membrane

Lu-Lu Kang, Shuai-Wu Zuo, Bing-Xue Han and Gang Li*

^aCollege of Chemistry and Green Catalysis Centre, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China

*To whom correspondence should be addressed. E-mail: gangli@zzu.edu.cn

	HOF 1
Formula	$C_{24}H_{23}N_3O_{10}$
$F_{ m w}$	513.45
Crystal system	monoclinic
Space group	$P2_1/n$
<i>a</i> (Å)	7.9842(3)
b (Å)	18.7164(7)
c (Å)	15.8121(5)
α (deg)	90
β (deg)	92.417(3)
$\gamma(\text{deg})$	90
$V(Å^3)$	2360.78(16)
Ζ	4
$\rho_{calc}g/cm^3$	1.445
<i>F</i> (000)	1072.0
μ (mm ⁻¹)	0.971
Theta range for data collection	7.322 to 134.112
Index ranges	$-7 \le h \le 9, -22 \le k \le 14, -14 \le l \le 18$
Reflections	8515
Data/restraints/parameters	4219/2/346
Goodness-of-fit on F^2	1.029
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0658, wR_2 = 0.1769$
Final R indexes [all data]	$R_1 = 0.0899, wR_2 = 0.2002$
Dr_{min} and Dr_{max}/e Å ⁻³	0.36/-0.35

 Table S1. Crystallographic data and structure refinement information for HOF 1.

		aistailees (11) alla aligies (a • b) for f
O(1)-C(1)	1.206(4)	C(6)-C(7)	1.394(4)
O(2)-C(1)	1.303(4)	C(7)-C(8)	1.387(4)
O(3)-C(2)	1.212(4)	C(8)-C(9)	1.397(4)
O(4)-C(2)	1.312(4)	C(9)-C(17)	1.503(4)
O(5)-C(3)	1.245(4)	C(10)-C(11)	1.365(5)
O(6)-C(3)	1.244(4)	C(11)-C(12)	1.380(5)
N(1)-C(10)	1.338(4)	C(12)-C(13)	1.378(5)
N(1)-C(14)	1.344(4)	C(13)-C(14)	1.375(4)
N(2)-C(15)	1.342(4)	C(14)-C(15)	1.484(4)
N(2)-C(19)	1.334(4)	C(15)-C(16)	1.385(4)
N(3)-C(20)	1.361(4)	C(16)-C(17)	1.387(4)
N(3)-C(24)	1.369(4)	C(17)-C(18)	1.384(4)
C(1)-C(4)	1.499(4)	C(18)-C(19)	1.396(4)
C(2)-C(6)	1.496(4)	C(19)-C(20)	1.492(4)
C(3)-C(8)	1.514(4)	C(20)-C(21)	1.353(4)
C(4)-C(5)	1.392(4)	C(21)-C(22)	1.356(5)
C(4)-C(9)	1.397(4)	C(22)-C(23)	1.376(6)
C(5)-C(6)	1.381(4)	C(23)-C(24)	1.366(6)

Table S2. Selected bond distances (Å) and angles (deg) for 1.

Table S3. Selected bond distances (Å) and angles (deg) for HOF 1 $\,$

C(10)-N(1)-C(14)	123.3(3)	N(1)-C(10)-C(11)	120.0(3)
C(19)-N(2)-C(15)	117.6(2)	C(10)-C(11)-C(12)	118.5(3)
C(20)-N(3)-C(24)	118.7(3)	C(13)-C(12)-C(11)	120.3(3)
O(1)-C(1)-O(2)	123.8(3)	C(14)-C(13)-C(12)	119.8(3)
O(1)-C(1)-C(4)	123.3(3)	N(1)-C(14)-C(13)	118.1(3)
O(2)-C(1)-C(4)	112.9(2)	N(1)-C(14)-C(15)	117.3(3)
O(3)-C(2)-O(4)	123.8(3)	C(13)-C(14)-C(15)	124.6(3)
O(3)-C(2)-C(6)	122.5(3)	N(2)-C(15)-C(14)	115.1(2)
O(4)-C(2)-C(6)	113.7(3)	N(2)-C(15)-C(16)	123.8(3)

O(5)-C(3)-C(8)	116.8(3)	C(16)-C(15)-C(14)	121.2(3)
O(6)-C(3)-O(5)	125.5(3)	C(15) C(16) C(17)	118.2(3)
O(6)-C(3)-C(8)	117.6(3)	C(16)-C(17)-C(9)	121.6(2)
C(5)-C(4)-C(1)	120.2(2)	C(18)-C(17)-C(9)	119.7(2)
C(5)-C(4)-C(9)	119.7(2)	C(18)-C(17)-C(16)	118.7(3)
C(9)-C(4)-C(1)	120.0(2)	C(17)-C(18)-C(19)	119.1(3)
C(6)-C(5)-C(4)	120.9(3)	N(2)-C(19)-C(18)	122.6(3)
C(5)-C(6)-C(2)	119.6(3)	N(2)-C(19)-C(20)	117.2(2)
C(5)-C(6)-C(7)	119.2(3)	C(18)-C(19)-C(20)	120.2(2)
C(7)-C(6)-C(2)	121.1(3)	N(3)-C(20)-C(19)	119.1(3)
C(8)-C(7)-C(6)	120.6(3)	C(21)-C(20)-N(3)	122.2(3)
C(7)-C(8)-C(3)	119.4(2)	C(21)-C(20)-C(19)	118.7(3)
C(7)-C(8)-C(9)	120.1(3)	C(20)-C(21)-C(22)	118.1(3)
C(9)-C(8)-C(3)	120.2(2)	C(21)-C(22)-C(23)	122.1(3)
C(4)-C(9)-C(17)	120.8(2)	C(24)-C(23)-C(22)	118.1(3)
C(8)-C(9)-C(4)	119.4(3)	C(23)-C(24)-N(3)	120.9(3)
C(8)-C(9)-C(17)	119.8(2)		

 Table S4. Hydrogen bonding parameters of HOF 1.

D-H···A	d(D-H)	d(H···A)	d(D - A)	∠(DHA)
O(2)-H(2)-O(6) #1	0.82	1.76	2.576(3)	175.6
O(7)-H(7B)-O(4)	0.87	1.75	2.592(4)	162.9
O(8)-H(8A)-O(7)	0.85	2.31	2.860(6)	122.7
O(8)-H(8B) O(6)#2	0.85	1.94	2.790(5)	175.9
O(9)-H(9B) O(5)	0.91(2)	2.11(18)	2.849(5)	138(23)
N(1)-H(1)-O(10)#3	0.86	1.94	2.718(4)	150.2
O(10)-H(10B) O(14)	0.85	2.06	2.837(4)	152.6

			RH (%)		
temp (° C)	68	75	85	93	98
30	-	-	-	1.21×10^{-6}	3.54×10^{-6}
40	-	-	-	1.6×10^{-6}	4.6×10^{-6}
50	1.03×10^{-7}	1.56×10^{-7}	2.6×10^{-7}	3.18×10^{-6}	4.96×10^{-6}
60	3.73×10^{-7}	6.66×10^{-7}	8.88×10^{-7}	6.4×10^{-6}	1.84×10^{-5}
70	7.93×10^{-7}	1.56×10^{-7}	2.9×10^{-6}	3.8×10^{-5}	4.16×10^{-5}
80	1.18×10^{-6}	3.23×10^{-6}	4.08×10^{-6}	5.53×10^{-5}	1.48×10^{-4}
90	4.42×10^{-6}	8.7×10^{-6}	1.25×10^{-5}	7.44×10^{-5}	2.08×10^{-4}
100	1.02×10^{-5}	1.82×10^{-5}	8.41 × 10 ⁻⁵	1.93 × 10 ⁻⁴	4.83×10^{-4}

Table S5. Proton Conductivities $(S \cdot cm^{-1})$ of HOF 1 at Different RHs and Temperatures.

S

Table S6. The proton conductivities (S·cm⁻¹) of CS/HOF-x at 98% RH.

			Wet (%)		
temp (°C)	Pure CS	2%	4%	6%	8%
30	1.42×10 ⁻³	3.61×10 ⁻³	4.01×10 ⁻³	2.05×10-3	1.27×10 ⁻³
40	2.01×10 ⁻³	4.13×10 ⁻³	4.92×10 ⁻³	2.15×10 ⁻³	1.58×10 ⁻³
50	2.46×10-3	4.89×10-3	6.30×10 ⁻³	4.22×10-3	2.00×10-3
60	3.40×10 ⁻³	5.73×10 ⁻³	1.06×10 ⁻²	4.80×10 ⁻³	2.85×10 ⁻³
70	5.38×10 ⁻³	1.08×10 ⁻²	1.13×10 ⁻²	5.26×10 ⁻³	4.28×10 ⁻³
80	7.10×10 ⁻³	1.23×10 ⁻²	1.31×10 ⁻²	1.14×10 ⁻²	6.34×10 ⁻³
90	1.04×10 ⁻²	1.34×10 ⁻²	1.74×10 ⁻²	1.53×10 ⁻²	1.50×10 ⁻²
100	1.25×10-2	1.64×10 ⁻²	2.61×10 ⁻²	2.10×10 ⁻²	1.94×10 ⁻²

materials	conductivity $(S \cdot cm^{-1})$	testing conditions
UPC-H3 [1]	9.0×10^{-2}	80 °C and 99% RH
HOF-GS-10 [2]	0.75×10^{-2}	85 °C and 90% RH
HOF-GS-11 [2]	1.80×10^{-2}	30 °C and 95% RH
CPOS-2 [3]	3.7×10^{-3}	100 °C and 98% RH
MHOF-1 [4]	0.75×10^{-3}	80 °C and 98% RH
MHOF-3 [4]	0.97×10^{-3}	80 °C and 98% RH
CPOS-1 [3]	$6.0 imes 10^{-4}$	30 °C and 98% RH
HOF 1	4.83×10^{-4}	100 °C and 98% RH
MA-B-BDC [5]	4.32×10^{-4}	50 °C and 98% RH
CPOS-3 [3]	3.7×10^{-4}	30 °C and 98% RH
MHOF-2 [4]	3.5×10^{-4}	80 °C and 98% RH
MA-TMA [5]	3.11 × 10 ⁻⁴	70 °C and 98% RH
HOF-H ₃ L [6]	6.91 × 10 ⁻⁵	30 °C and 98% RH
CPOS-4 [3]	5.6×10^{-5}	30 °C and 98% RH
HOF 6 [7]	3.40×10^{-6}	27 °C and 97% RH
GTUB5 [8]	3.00×10^{-6}	75 °C and 75% RH

Table S7. Comparison of the σ of HOF 1 with that of other HOFs.

Equivalent circuit LR(C(QR)):

Figure S1. Nyquist plots for a polycrystalline sample of HOF 1 under 30 °C (a) and 100 °C (b) at 98% RH. Red circle and green square are the measured impedance spectroscopy values and the fits of the impedance data to the equivalent circuit of LR(C(QR)).

Equivalent circuit LR(Q(R(QR))):

(b)

Figure S2. Nyquist plots for composite membrane samples of Pure CS membrane (a) and CS/HOF-

2 (b) and CS/HOF-4 (c) and CS/HOF-6 (d) and CS/HOF-8 (e) under 98% RH and 100 °C. Red circle and green square are the measured impedance spectroscopy values and the fits of the impedance data to the equivalent circuit of LR(Q(R(QR))).

Figure S3. The 3D framework of 1 supported by intermolecular H-bonds and - interactions.

Figure S4. TG analysis profiles of HOF 1.

Figure S5. The PXRD patterns of crystals for 1 after soaking in different acidic solutions.

Figure S6. The Fourier Transform Infrared spectra of the CS/HOF-x.

Figure S7. The PXRD patterns of CS/HOF-x

Figure S8. Impedance spectra of HOF 1 at 50-100 °C and 68% RH.

Figure S9. Impedance spectra of HOF 1 at 50-100 °C and 75% RHs.

Figure S10. Impedance spectra of HOF 1 at 50-100 °C under 85% RH.

Figure S11. Impedance spectra of HOF 1 at 30-100 °C under 93% RH.

Figure S12. Impedance spectra of HOF 1 at 30-100 °C under 98% RH.

Figure S13. Arrhenius plots of the σ for HOF 1 under 98% and 68% RHs.

Figure 14. Water vapor adsorption/desorption isotherms of HOF 1 at 25 °C.

Figure S15. N₂ adsorption–desorption isotherms of HOF 1.

Figure S16. The PXRD patterns of HOF 1 before and after impedance measurement.

(b)

(c)

Figure S17. Impedance spectra of CS/HOF-x at 98% RH and 30-100 °C.(a) CS/HOF-2 (b) CS/HOF-6 (c) CS/HOF-8

REFERENCES

- Q. Yang, Y. Wang, Y. Shang, J. Du, J. Yin, D. Liu, Z. Kang, R. Wang, D. Sun, J. Jiang, Cryst. Growth Des., 2020, 20, 3456-3465.
- A. Karmakar, R. Illathvalappil, B. Anothumakkool, A. Sen, P. Samanta, A.V. Desai, S. Kurungot, S.K. Ghosh, Angew. Chem., Int. Ed. 2016, 55, 1-6.
- 3. G. Xing, T. Yan, S. Das, T. Ben, S. Qiu A, Angew. Chem., Int. Ed. 2018, 57, 5345-5349.
- 4. S. Chand, S.C. Pal, A. Pal, Y. Ye, Q. Lin, Z. Zhang, S. Xiang, M.C. Das, Chem-Eur.J. 2019, 25, 1691-1695.
- 5. B.-B. Hao, X.-X. Wang, C.-X. Zhang, Q. Wang, Cryst. Growth Des., 2021, 21, 3908-3915.
- 6. Z.-B. Sun, Y.-L. Li, Z.-H. Zhang, Z.-F. Li, B. Xiao, G. Li, New. J. Chem., 2019, 43, 10637-10644.
- W. Yang, F. Yang, T.-L. Hu, S.C. King, H. Wang, H. Wu, H. Zhou, J.-R. Li, Arman, H.D.; B. Chen, Cryst. Growth Des., 2016, 16, 5831–5835.
- P. Tholen, C.A. Peeples, R. Schaper, C. Bayraktar, T.S. Erkal, M.M. Ayhan, B. Cost, J. Beckmann, A.O. Yazaydin, M. Wark, G. Hanna, Y. Zorlu, G. Yucesan, Nat. Commun., 2020, 11, 3180.