Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supporting Information

Heat-set supramolecular polymer gel and decomposition by guests

Surajit Singh,†Ananda Shit,†SahabajMondal,†Olamilekan Joseph Ibukun† and Debasish

Haldar*†

[†]Department of Chemical Sciences, Indian Institute of Science Education and Research

Kolkata, Mohanpur 741246, Nadia, West Bengal, India.

Fax: +913325873020; Tel: +913325873119;

E-mail: deba_h76@yahoo.com; deba_h76@iiserkol.ac.in

Table of contents

1. Figure S1	S2
2. Figure S2	S2
3.Figure S3	S 3
4. Figure S4	S4
5. Figure S5	S4
6. Figure S6	S 5
7. Figure S7	S 5
8. Figure S8	S6
9. Figure S9	S6
10. Figure S10	S 7
11. Figure S11	S 7
12. Figure S12	S7
13. Synthesisof Compound 1	S8

Figure S1:Transformation from GelAto sol to GelB.

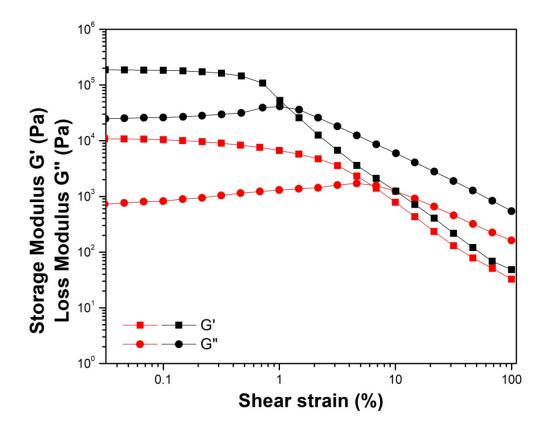
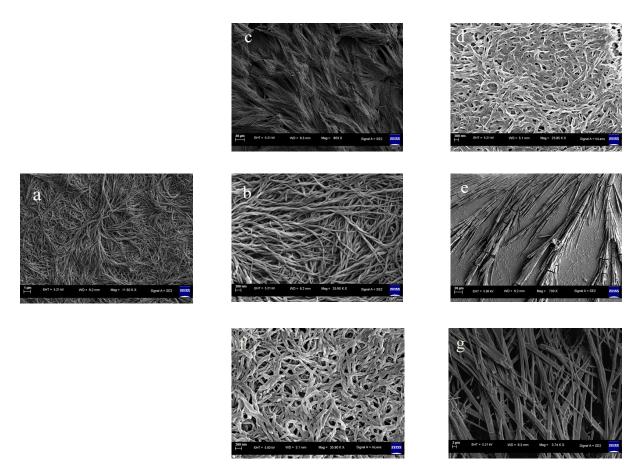
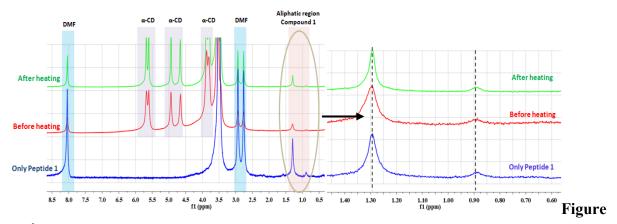




Figure S2:Comparism of modulus ofgelA (red colour) and gelB (black colour).

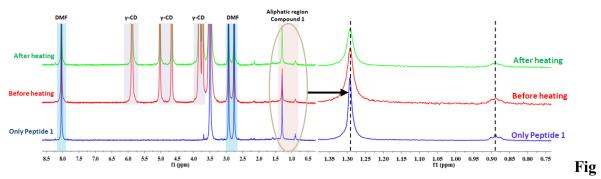
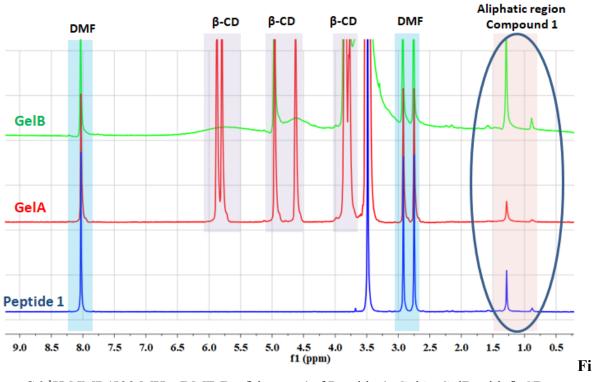


Figure S3: FE-SEM image of all gel and solution (a) FE-SEM image of xerogelformed by lowmolecular-weight gelator 1 in DMF (b) FE-SEM image of DMF solutionformed by lowmolecular-weight gelator 1 (c) FE-SEM image xerogel formed by compound 1with β -CD (d) FE-SEM image of sol at 85°C without K₂CO₃. (e) FE-SEM image of xerogelB formed with β -CD and K₂CO₃ (f) FE-SEM image of xerogelA. (g) FE-SEM image of solution form by gelAat 58 °C.


Procedure of sample preparation for ¹H-NMR:At first we have prepared a gel (gelA) in NMR tube by compound 1 with β -CD/ α -CD/ γ -CD and K₂CO₃in DMF-D₇ at room tempareture,then we have taken NMR data. After that we have heated these gels around 90°C and taken NMR.

S4: ¹H-NMR (500 MHz, DMF-D₇, δ in ppm)of Peptide 1, before and after heating with α -CD.

ure S5: ¹H-NMR (500 MHz, DMF-D₇, δ in ppm)of Peptide 1, before and after heating with γ -CD.

gure S6:¹H-NMR(500 MHz, DMF-D₇, δ in ppm)of Peptide 1, GelA, GelB with β -CD.

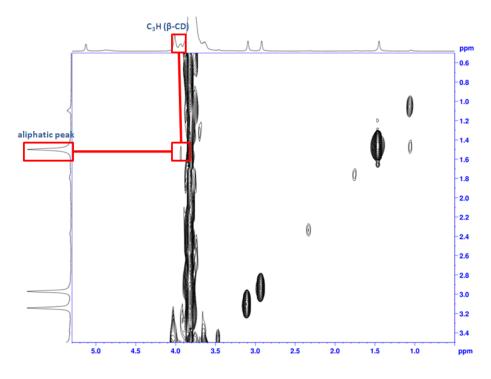
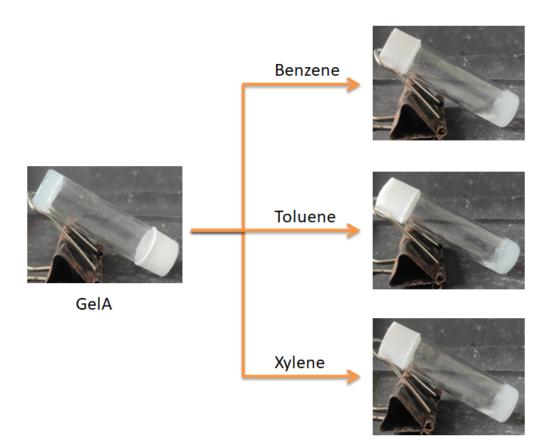
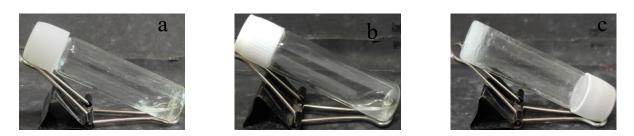




Figure S7: 2D COSY NMR spectrum of heat set gelB (500 MHz, DMF-D₇, δ in ppm). cross peak between the inner protons C(3)-H of β CD and peptide 1.

Figure S8:Theguest molecules like benzene, toluene, xylene do not have effect on gelA. No sol to gel conversion on addition of these guests.

Figure S9.(a) Sol in presence of α -CD at high temperature (we heated upto 100 °C); (b) Sol in presence of γ -CD at high temperature (we heated upto 100 °C); (c) gelB form with β -CD at 86 °C.

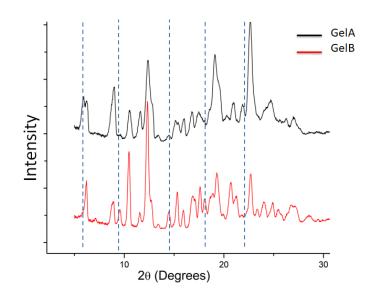


Fig. S10:Comparable PXRD pattern of gelA and gelB

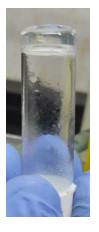


Fig. S11: Image of transparent gel form by only compound 1.

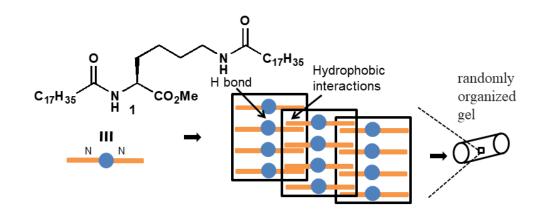
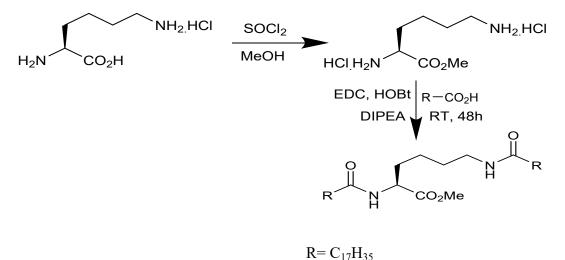
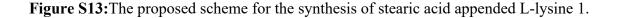
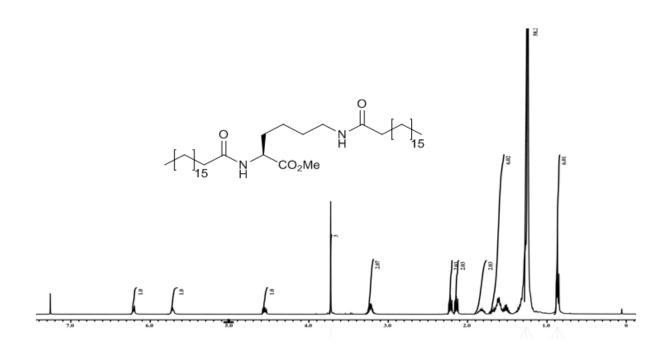



Fig. S12: Tentative model for the structure of randomly organized gelA of compound 1.


Synthesis of Compound 1.

Synthesis of stearic acid appended L-lysine: 1.194 g (4.2 mmol) of stearic acid dissolved in minimum DMF and 30 ml DCM and kept in an ice bath and 0.466 g (2 mmol) of Lyn-OMe.HCl (which was isolated from acid protection reaction of L-lysine by SOCl₂, MeOH) was added followed by 0.802 g (4.2 mmol) EDC.HCl and 0.567 g(4.2 mmol) HOBt and 2 ml DIPEA. The reaction mixture was kept at room temperature and stirred for 2 days. Then DCM evaporated and the residue was dissolved in ethyl acetate (60 mL); organic layer washed with 2 M HCl (3×50 mL) and 1 M Na₂CO₃ (3×50 mL), then collected the precipitated.

The synthetic procedure of stearic acid appended L-lysine:



 $K = C_{17} I_{35}$

Characterization of stearic acid appended L-lysine 1:

¹H NMR (400 MHz, CDCl3, δ in ppm, 298K): 6.20(d,1H, NH), 5.71(s, 1H, NH), 4.55(m, 1H, C α -H), 3.72(s, 3H, OCH₃), 3.22(m, 2H, C $_{\beta}$ -H), 2.21(t, 2H, CH₂), 2.14(t, 2H, CH₂), 1.87(m, 2H, CH₂), 1.71-1.13(m, 64H, aliphatic proton) 0.849(t, 6H, CH₃ proton). ¹³C NMR (100 MHz, CDCl₃, δ ppm): 173.63, 173.42, 173.20, 52.49, 51.74, 38.79, 38.96, 36.67, 36.96, 32.05, 29.81, 29.49, 28.97, 25.96, 25.76, 22.80, 22.41, 14.24 ESI-MS (MeOH): m/z (Calc): C43H84N2O4Na [M+Na]+ 715.64; found: 715.63. Yield: 55%. white colour solid.

Figure S14:¹H NMR (400 MHz, CDCl3, δ in ppm, 298K) spectra of stearic acid appended lysine **1**.

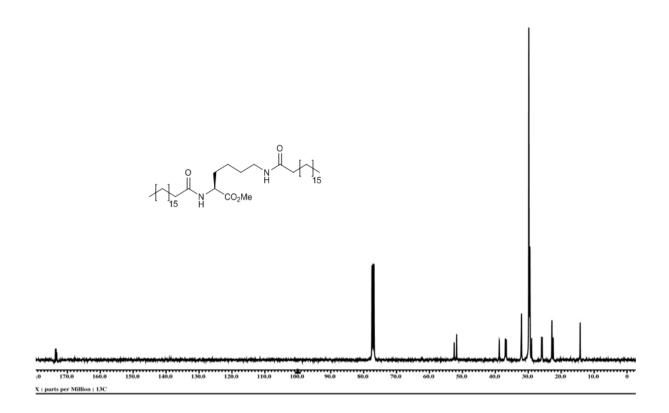


Figure S15:¹³C NMR (100 MHz, CDCl3, δ in ppm, 298K) spectra of stearic acid appended

L-lysine 1.

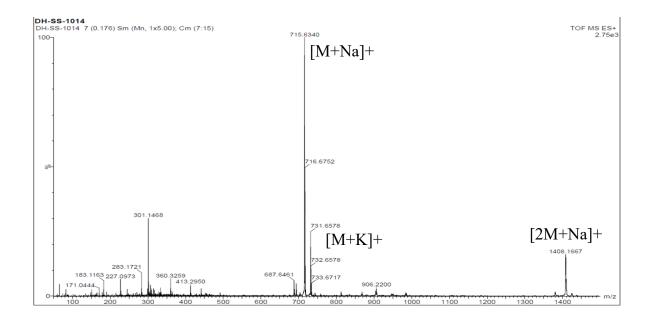


Figure S16: ESI-MS spectra of stearic acid appended L-lysine 1.

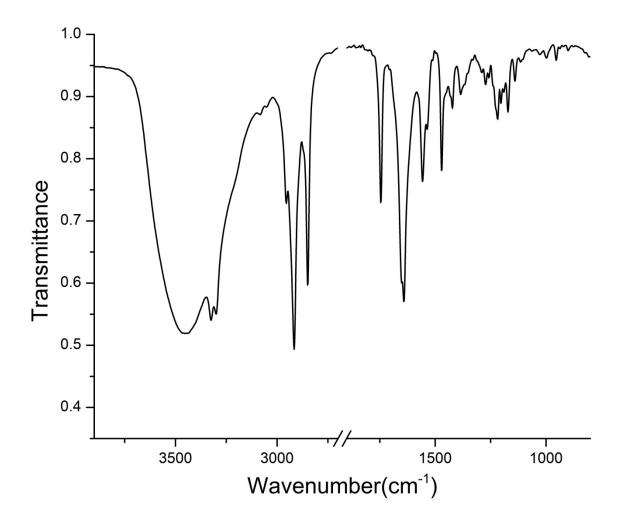


Figure S17: FT-IR spectra of stearic acid appended L-lysine 1.