Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Supplementary Information

Zeolite imidazolate framework/g-C₃N₄ derived Co nanoparticles embedded in nitrogen doped carbon for efficient hydrogenation of phenol

Zegang Qiu^a, Zongxuan Li^a, Shaobo Ma^a, Zhiqin Li^{a*}, Yueling Cao^{b*}, Guangyu Li^c

^aXi'an Shiyou University, Xi'an 710065, PR China

^bXi'an Key Laboratory of Functional Organic Porous Materials, School of Chemistry and Chemical Engineering,

Northwestern Polytechnical University, Xi'an 710129, PR China

°State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University,

Yinchuan 750021, China

*Zhiqin Li: lizhiqin @xsyu.edu.cn;

*Yueling Cao: yuelingcao@nwpu.edu.cn

Table S1	Hydrogenation of	phenol to	cyclohexanol	over various	catalysts in	references	and this work
1	- Jarogenation of	prior to	•)• • • • • • • • • • • • • • • • • •	0.01	c atal j 5 to 111		

Catalysta	Reaction conditions			litions	phenol	Cyclohexanol	Deference	Data
Catalysis	T/°C	P/MPa	t/h	Solvent	Conversion/%	Selectivity/%	Kelefence	Date
Raney®Ni	220	2	2	water	87	52	[16]	2018
Ni/SiO ₂	200	1	4	water	100	100	[17]	2017
Ni/NiCaAlO _x	110	2	3	n-hexane	99.9	99.9	[18]	2021
Co/CeO ₂	150	3	16	water	82.5	100	[19]	2020
CoOx@C	150	3	16	water	98	77	[20]	2018
NiCo@C/ZrO2	200	2	4	water	96	91	[21]	2019
NiCo/γ-Al ₂ O ₃	250	2	4	water	82	85	[22]	2019
NiCo/SDSW	100	5	4	Isopropanol	99.9	99.9	[23]	2020
NiCo/Mg _x Ni _y O	150	2	2.5	n-Hexane	99.9	99.9	[24]	2020
This work	120	2	3	water	97.8	100		

Fig. S1 XRD pattern of ZIF-67/g-C₃N₄

Fig. S2 SEM images of Co/NPCN $_{0.25}$, Co/NPCN $_{1.0}$ and Co/NPCN $_{1.5}$ catalysts

(a)(b) Co/NPCN_{0.25}; (c)(d) Co/NPCN_{1.0}; (e)(f) Co/NPCN_{1.5}

Fig. S3 EDS spectra of Co/NPCN_{0.5}

Fig. S4 TEM images of Co/NPCN catalysts with different g-C₃N₄ contents (a), (b): Co/NPCN_{0.25}; (c), (d): Co/NPCN_{1.0}; (e), (f): Co/NPCN_{1.5}

Table S2 Determination of cobalt content in Co/NPCN with different g-C₃N₄

Catalysts	Co wt. (%)
Co/NPCN _{0.25}	38.6
Co/NPCN _{0.5}	40.3
Co/NPCN _{1.0}	40.4
Co/NPCN _{1.5}	40.7

content by ICP-AES

Fig. S5 XPS survey spectrum of Co/NPCN_{0.5}

Fig. S6 XPS Spectra of Co/NPCN catalysts with different g-C₃N₄

(a) C 1s; (b) N 1s

Fig. S7 Parallel stable adsorption configurations of C1, C2, C3, C5 and C6 of phenol

on Co sites of Co-C-N

The atomic colours of cobalt, carbon, nitrogen, oxygen and hydrogen are dark fuchsia, dark gray, blue, red and green, respectively.

	Adsorption energy (eV)						
Adsorption atom	Parallel ad	Parallel adsorption			Vertical adsorption		
C	phenol	-0.82			0.70		
C3	cyclohexanol	1 -0.36		pnenoi	-0.79		
0	phenol	-0.79	0	avalah ayan al 1	al 1.04		
0	cyclohexanol	-1.09	-1.09		101 -1.04		
Table S4 Catalyti	c performance o	f Co/NPCN catal	lysts at c	lifferent pyrolys	is temperatures		
Catalysts	nenol Conversion	u (%)	Cyclohexanol Selectivity (%)				
Co/NPCN-6	500	0					
Co/NPCN-7	700	72.8		1	00		
Co/NPCN-8	300	97.8		100			
Co/NPCN-9	900	29.6		100			
				♦→C ♣→Co			
	+	*		♣			
asity (a		J	****	Co/NPCN-800			
n Inte			ndressed also-daway-friendestare				
		Alexandrum Maria and an an an a fair an		Co/NPCN-600			
	20 30	40 50 60 2 Theta (degre	70 ee)	80 90			

 Table S3 Adsorption energies of parallel and vertical adsorption of phenol and cyclohexanol on Co sites of Co-C-N

Fig. S8 XRD patterns of Co/NPCN catalysts at different pyrolysis temperatures

Fig. S9 N_2 adsorption-desorption isotherms (a) and pore size distribution curve (b)

Table S5 Structural parameters of Co/NPCN catalysts at different pyrolysis temperatures

Catalysts	$S_{BET} \ (m^2\!/g)$	$V_t{}^b \ (cm^3\!/g)$	D ^c (nm)
Co/NPCN-600	79.1	0.3	18.1
Co/NPCN-700	320.1	0.5	6.1
Co/NPCN-800	342.6	0.8	8.7
Co/NPCN-900	330.3	0.5	6.3

Fig. S10 TEM images of Co/NPCN catalysts at different pyrolysis temperatures (a), (b), (c) Co/NPCN-700; (d), (e), (f) Co/NPCN-900

Table S6 Determination of cobalt content in Co/NPCN catalysts at different pyrolysis temperatures by ICP-

	AES	_
Catalysts	Co wt (%)	-
Co/NPCN-600	13.1	-
Co/NPCN-700	39.1	
Co/NPCN-800	40.4	
Co/NPCN-900	40.7	

Table S7 Effects of different reaction pressures on selective hydrogenation of phenol

Pressure (MPa)	phenol Conversion (%)	cyclohexanol Selectivity (%)
1.0	96.4	100
1.5	96.9	100
2.0	97.8	100
2.5	97.8	100
3.0	97.9	100

Reaction conditions: catalyst 50mg, phenol 0.2mmol, H₂O 10mL, 120°C, 3h.

Fig. S11 XRD patterns of fresh and used Co/NPCN_{0.5} catalyst