Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

New Journal of Chemistry

SUPPLEMENTARY INFORMATION

On the coordination behaviour of diorganoselenium ligands based on amino and azole functionalities: silver(I) complexes with relevance for biological applications

Roxana A. Popa,^a Maria David,^a Emilia Licarete,^b Manuela Banciu^b and Anca Silvestru^{*a}

 ^a Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Str. Arany Janos 11, RO-400028 Cluj-Napoca, Romania E-mail: anca.silvestru@ubbcluj.ro
^b Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and

Bioresources, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania

Figure S1. Stacked ¹H NMR spectra (acetone- d_6) of compound 1 and compound 3.

Figure S2. Stacked ¹H NMR spectra (DMSO- d_6) of ligand L2 and complex 2.

Figure S3. Stacked ¹H NMR spectra (acetone- d_6) of ligand L7 and complex 7.

Figure S4. Stacked ¹H NMR spectra (acetone- d_6) of ligand L4 and complex 4.

Figure S6. ⁷⁷Se{¹H} NMR spectra of complexes **1-3** and **7** *vs*. those of the free ligands **L1-L3** and **L7**.

Figure S7. ⁷⁷Se{¹H} NMR spectra of complexes 4-6 *vs*. those of the free ligands L4-L6.

Figure S8. (a) Experimental ESI+ HRMS spectrum (MeOH) of complex **4**, compared with (b) the corresponding simulated peaks.

Figures S9. Best view of a polymeric chain in the crystal of **2**. Hydrogen atoms, except those involved in intra- and intermolecular interactions, are omitted for clarity. Symmetry equivalent positions (1+x, y, z) and (-1+x, y, z) are given by "prime" and "double prime", respectively.

Figures S10. Best view of a 2D layer in the crystal of **2**. Hydrogen atoms, except those involved in intermolecular interactions, are omitted for clarity. Symmetry equivalent positions (1+x, y, z), (-1+x, y, z), and (2-x, -1/2+y, 1/2-z) are given by "prime", "double prime" and "triple prime", respectively.

O2…H10B''' 2.63 Å O3'''…H10A''' 2.65 Å O2…H4''' 2.53 Å

Figures S11. Best view of polymeric chain in the crystal of **3**. Hydrogen atoms, except those involved in intramolecular or intermolecular interactions, are omitted for clarity. Symmetry equivalent positions (-1+x, y, z) are given by "prime".

O3…H14'

2.59 Å

2.70 Å

O3…H9B

Figures S12. Best view of 2D layer in the crystal of **3**. Hydrogen atoms, except those involved in interactions, are omitted for clarity. Symmetry equivalent positions (-1+x, y, z), (1+x, y, z) and (-x, -1/2+y, 3/2-z) are given by "prime", "double prime" and "triple prime", respectively.

O4""···H8B 2.36 Å O2""···H4' 2.62 Å O4""···H5' 2.74 Å

Figures S13. Best view of polymeric chain in the crystal of **7**. Hydrogen atoms, except those involved in intramolecular or intermolecular interactions, are omitted for clarity. Symmetry equivalent positions (1-x, -y, 1-z) and (x, -1+y, z) are given by "prime" and "double prime", respectively.

Figures S14. Best view of a 2D layer in the crystal of **7**. Hydrogen atoms, except those involved in interactions, are omitted for clarity. Symmetry equivalent positions (1+x, y, z) and (1-x, 1-y, 1-z) are given by "triple prime" and "quadruple prime", respectively.

H13····O1"" 2.49 Å H1B···O1" 2.64 Å

Figure S15. Best view of chain of dimers in complex **6a**. Hydrogen atoms that are not involved in interactions are omitted for clarity. Symmetry equivalent positions (1-x, 1-y, 1-z), (-x, 1-y, 1-z) and (-1+x, y, z) are given by "prime", "double prime" and "triple prime", respectively.

H4…F4" 2.78 Å

Figure S16. Concentration-dependent antiproliferative effect of ligands L1, L2, L7 and complexes 1-3, 6 and 7 in comparison with untreated control B16.F10 cells.

	2	3	6a	7
Empirical formula	$C_{22}H_{24}AgF_3N_2O_3S_2Se$	$C_{22}H_{22}AgF_3N_2O_4S_2Se$	$C_{36}H_{44}Ag_2F_{12}N_6O_{14}S_4Se_2$	$C_{21}H_{16}AgF_{3}N_{2}O_{3}S_{3}Se$
Formula weight	672.38	686.36	1514.67	684.37
Temperature, K	100	100(2)	100(2)	100(2)
Wavelength, Å	0.71073	0.71073	0.71073	0.71073 Å
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic
Space group	P 1 21/c 1	P 1 21/c 1	P 1 21/n 1	P -1
a (Å)	10.4570(2)	10.6360(5)	9.8868(4)	10.2327(4)
<i>b</i> (Å)	15.9675(4)	16.0422(6)	8.8596(3)	10.2327(4)
<i>c</i> (Å)	14.6466(4)	14.5344(7)	28.9794(11)	12.0832(4)
α (°)	90	90	90	113.0990(10)
β (°)	102.627(1)	101.678(2)	91.637(1)	97.0510(10)
γ (°)	90	90	90	97.7960(10)
Volume, Å ³	2386.43(10)	2428.60(19)	2537.36(16)	1176.07(7)
Ζ	4	4	2	2
Density (calculated), g/cm ³	1.871	1.877	1.983	1.933
Absorption coefficient, mm ⁻¹	2.597	2.557	2.483	2.722
F(000)	1336	1360	1496	672
Crystal size, mm	0.210 x 0.185 x 0.127	0.067 x 0.081 x 0.113	0.141 x 0.113 x 0.097	0.147 x 0.138 x 0.018
θ range for data collections (°)	1.91 to 28.30	1.91 to 28.31	1.41 to 28.40	2.047 to 28.308
Reflections collected	67318	77917	64785	66088
Independent reflections	5921 [R(int) = 0.0314]	6044 [R(int) = 0.0663]	6345 [R(int) = 0.0371]	5840 [R(int) = 0.0290]
Refinement method				
Data / restraints / parameters	5921 / 0 / 309	6044 / 0 / 316	6345 / 0 / 343	5840 / 0 / 307
Goodness-of-fit on F^2	1.038	1.042	1.136	1.062
Final <i>R</i> indicies [I>2sigma(I)]	R1 = 0.0219, wR2 = 0.0471	R1 = 0.0309, wR2 = 0.0754	R1 = 0.0312, wR2 = 0.0857	R1 = 0.0217, wR2 = 0.0501
<i>R</i> indicies (all data)	R1 = 0.0202, wR2 = 0.0464	R1 = 0.0409, wR2 = 0.0814	R1 = 0.0363, wR2 = 0.0937	R1 = 0.0249, wR2 = 0.0517
Largest diff. peak and hole, eÅ ⁻³	1.087 and -0.725	1.015 and -1.029	1.653 and -0.831	1.623 and -0.975

Table S1. Crystal data and structure refinement for $[Ag(OTf)Se\{C_6H_4(CH_2NEt_2)-2\}(CH_2Phtz)]$ (2), $[Ag(OTf)Se\{C_6H_4[CH_2N(CH_2CH_2)_2O]-2\}(CH_2Phtz)]$ (3), $[Ag(OTf)_2Se\{C_6H_4[CH_2N(H)(CH_2CH_2)_2O]-2\}(CH_2CH_2pz)]_2$ (6a) and $[Ag(OTf)Se(CH_2Phtz)_2]$ (7).