Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

Supporting Information

Mayank, ^{a,b*} Ashutosh Singh,^c Kumar Udit Saumya,^c Mayank Joshi,^d Navneet Kaur,^{e*} Neha Gargc,^{c,f*}, Narinder Singh^{a*}

^aDepartment of Chemistry, Indian Institute of Technology Ropar, Punjab 140001, India, nsingh@iitrpr.ac.in

^bUniversity College of Pharmacy and Guru Kashi University, Talwandi Sabo mayank6103@gmail.com

^c School of Basic Sciences, Indian Institute of Technology Mandi, Himachal Pradesh 175005, India,

^dM. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana,

Ambala, Haryana, 133207, India.

^eDepartment of Chemistry, Punjab University, Chandigarh, 160014, India.

navneetkaur@pu.ac.in

^fDepartment of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh-221005, India.

nehagarg@bhu.ac.in

Figure SF 1.(1) Structure of MX-58151 (1); (2-5) other compounds of the MX-58151 series reported to binding colchicine binding site of α/β tubulin isoforms and (6)Basic scaffold of2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrilederivatives used in our studies.

Synthesis of chromene derivatives

The reaction scheme for the synthesis of chromene derivatives is as represented in figure SF1. Many methods for the synthesis of chromene derivatives are available in literature.¹⁻³ Herein, for the synthesis of chromene derivatives, one equivalent of each α-Naphthol, malononitrile, and aldehyde derivatives was reflexed in methanol for 6 hrs. Few drops of triethylamine were used as a catalyst and after completion of the reaction, the products were purified by recrystallizing using methanol as a solvent. The structural features of the synthesized compounds are represented in figure SF2 below. The characterization of the synthesized compounds were provided in figure SF3-SF14 below. Other methods for the synthesis of chromene derivatives are also reported

Figure SF2. Structure of chromene derivatives used in the study

Figure SF3. Structure of chromene derivatives used in the study

Figure SF4.¹H NMR and HRMS of MNC-1 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{21}H_{16}N_2O_2^+$ 329.12; found 329.1288)

Figure SF5.¹H NMR and HRMS of MNC-2 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{13}FN_2O^+$ 317.10; found 317.1092)

Figure SF6.¹H NMR and HRMS of MNC-3 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{23}H_{20}N_2O_4^+$ 389.14; found 389.1494)

Figure SF7.¹H NMR and HRMS of MNC-4 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{22}H_{18}N_2O_2^+$ 359.13; found 359.1395)

Figure SF8.¹H NMR and HRMS of MNC-5 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{14}N_2O^+$ 299.11; found 299.1181)

Figure SF9.¹H NMR and HRMS of MNC-6 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{22}H_{18}N_2O_3^+$ 359.13; found 359.1398)

Figure SF10.¹H NMR and HRMS of MNC-7 used in the study (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{14}N_2O_2^+$ 315.11; found 315.1135)

Figure SF11.¹H NMR of MNC-8 used in the study (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{14}N_2O_2^+$ 315.34; found 315.1132)

Figure SF12.¹H NMR of MNC-9 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{21}H_{16}N_2O_2^+$ 339.120; found 329.1296)

Figure SF13.¹H NMR and HRMS of MNC-10 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{14}N_2O_2^+$ 315.110; found 315.1139)

Figure SF14.¹H NMR and HRMSof MNC-11 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{13}CIN_2O^+$ 333.070; found 333.0797)

Figure SF15.¹H NMR of MNC-12 used in the study, (For HRMS m/z: $[M+H]^+$ calcd for $C_{20}H_{13}N_3O_3^+$ 344.100; found 344.104)

Crystal growth and structural analysis

The crystals of the compound MNC-10 were grown by slow evaporation technique at ambient temperature. SCXRD experiments of MNC-1 single crystal was performed on a Bruker AXS KAPPA APEX-II CCD diffractometer (Monochromatic Mo Kα radiation). Unit cell determination, data collection was done at 296.0 K and data reduction were made using the Bruker APEX-III package. The crystal structures were solved using Olex² package equipped with XT³ and were further refined using XL. Crystal diagram was created using Mercury software. The details of the single-crystal X-ray diffraction data collection, structure solution and refinement are given in Table 1.

Data/Salt	MNC-1				
Empirical formula	C ₂₀ H ₁₄ N ₂ O ₂				
CCDC number	2236979				
Formula weight	314.33				
Crystal system	Monoclinic				
Space group	$P2_1/c$				
a(Å)	13.4145(5)				
b(Å)	10.6112(4)				
c(Å)	11.6042(3)				
α(°)	90				
β(°)	109.3990(10)				
γ(°)	90				
V(Å ³)	1558.01(9)				
Ζ	4				
$\rho_{calc}(g/cm^{-3})$	1.340				
Temperature (K)	296.0(2)				
μ/ mm ⁻¹	0.088				
20 _{min, max} ()	5.01 to 56.694				
F (000)	656.0				
h _{min,max} ; k _{min,max} ; l _{min,max}	-17, 17; -14, 14; -15, 15				
Total no. of reflections	40495				
R _{int}	0.0494				
No. of unique reflections	3883				
$R_1[I>2\sigma(I)]$	0.0472				
wR2 (all data)	0.1232				
GooF on F ²	1.051				
$\Delta \rho_{max,min}/e{\rm \AA}^{-3}$	0.14/-0.23				

Table ST1: Crystallographic table of MNC-1

Figure SF16: Asymmetric unit of MNC-1 (Thermal ellipsoid probability 50%)

Figure SF17. Anticancer activity of chromene derivatives as obtained for HeLa (A) and A549 (B) cancer cell lines.

Figure SF18. A-J, Ramachandran plots for microtubule isoform BI, BIIa, BIIb, BIII, BIVa, BIVb, BV, BVI, BVIII, and BVIII respectively.

S. No	Isoform	Residues Percentage						
		Favorable region	Allowed Region	Outliers region				
1	BI	97.8%	1.8%	0.3%				
2	BIIa	97.7%	2.0%	0.3%				
3	BIIb	97.7%	2.0%	0.3%				
4	BIII	96.4%	3.1%	0.5%				
5	BIVa	96.4%	3.1%	0.5%				
6	BIVb	96.7%	2.9%	0.5%				
7	BV	96.5%	3.0%	0.5%				
8	BVI	96.3%	3.3%	0.3%				
9	BVII	97.0%	2.8%	0.2%				
10	BVIII	96.7%	3.0%	0.3%				

Table ST2: Ramachandran plot analysis revealing the percentage of total amino acid residues present in favorable, allowed, and outlier regions in the case of all the ten isoforms.

CODE	R/S	S/D* Binding pattern compounds against each isoform									
	Configuration	B1	BIIA	BIIb	BIII	BIVa	BIVb	BV	BVI	BVII	BVIII
MNC-1	R	S	S	D	S	S	S	S	S	S	S
	S	D	S	D	S	S	D	S	D	D	D
MNC-2	R	S	D	S	S	S	S	S	S	D	D
	S	S	S	D	D	S	S	S	S	S	S
MNC-3	R	D	D	S	D	S	D	S	S	S	S
	S	S	S	D	D	S	S	D	S	S	D
MNC-4	R	D	D	S	D	S	S	D	S	D	S
	S	D	D	S	S	S	S	S	S	S	S
MNC-5	R	D	S	S	S	S	D	S	S	S	S
	S	S	S	S	S	S	S	S	S	S	S
MNC 6	R	S	S	S	S	S	S	D	S	S	S
MINC-0	S	D	D	S	S	S	S	D	S	S	S
	R	S	S	S	S	S	S	S	S	S	S
MINC-7	S	S	S	D	S	S	S	D	S	S	S
MNC-8	R	S	S	D	D	S	S	S	S	S	S
	S	D	S	D	D	D	D	D	D	S	D
MNC-9	R	D	D	S	D	S	S	S	S	S	S
	S	D	D	S	S	S	S	S	S	S	S
MNC-10	R	S	S	S	S	S	S	S	D	S	S
	S	S	S	S	D	S	S	D	D	S	D
MNC 11	R	D	D	S	S	S	S	S	S	S	S
	S	S	S	S	S	S	S	D	S	S	S
MNC 12	R	D	D	D	S	S	D	S	S	D	S
MNC-12	S	S	D	D	S	S	D	D	D	S	D

Table ST3: Binding position of all the studied molecules in the case of tubulin isoforms.

*S = Binding of compounds at the same site where colchicine binds or some degree of overlapping, \mathbf{D} = Binding of compound at the site different from colchicine binding site.

β1		β 2b		β 2b		β3		β 4a		
Residue Index	RMSF	Residue Index	RMSF	Residue Index	RMSF	Residue Index	RMSF	Residue Index	RMSF	
873	5.11	718	9.171	440	8.384	440	5.896	440	14.855	
440	4.999	440	6.292	439	6.022	283	5.522	438	12.973	
40	4.836	722	6.048	283	5.01	717	5.059	439	12.648	
282	4.227	283	5.935	285	4.883	40	4.88	721	11.97	
283	4.037	720	5.818	438	4.515	873	4.264	163	11.947	
81	3.828	723	5.66	873	4.474	723	4.257	718	11.704	
163	3.697	719	5.445	40	4.431	718	4.247	661	11.35	
285	3.456	724	5.43	870	4.274	285	4.244	345	11.243	
42	3.44	721	5.123	718	4.266	724	4.102	720	11.158	
84	3.435	717	4.733	284	4.126	282	3.996	660	10.996	
β4b		β5		β6		β7		β8		
Residue Index	RMSF	Residue Index	RMSF	Residue Index	RMSF	Residue Index	RMSF	Residue Index	RMSF	
42	7.197	440	6.835	440	15.136	873	8.595	722	7.385	
40	6.444	283	6.127	438	14.738	872	6.488	723	7.305	
43	6.195	40	4.813	439	14.079	283	5.982	721	6.538	
283	6.023	439	4.747	349	13.993	440	5.913	724	6.431	
440	5.946	41	4.681	724	13.836	722	5.719	1	5.488	
41	5.304	42	4.625	721	13.654	718	5.115	725	4.367	
44	5.302	285	4.545	720	13.547	723	5.075	748	4.333	
46	5.099	438	4.528	725	13.153	720	4.834	718	4.068	
724	4.61	39	4.428	437	13.066	439	4.625	2	3.906	

Table ST4: Maximum side-chain RMSF fluctuating residues of MNC-1 bounded microtubule isoforms as obtained from 50 ns of MD simulation studies.

References

1. J. Du, M. Tao and W. Zhang, ACS Sustain. Chem. Eng., 2016, 4, 4296-4304.

2. M. G. Dekamin and M. Eslami, *Green Chem.*, 2014, **16**, 4914-4921.

3. D. S. Patel, J. R. Avalani and D. K. Raval, *J. Saudi Chem. Soc.*, 2016, **20**, S401-S405.