Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2023

*New Journal of Chemistry* 

## **Electronic Supplementary Information**

# Acquiring preferred mode of aggregation through positional antagonism for saponification triggered gelation

Prem Chand and Ashish Kumar\* Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi - 221 005 (U.P.), India

#### **Dilution experiment:**

Stock solutions for **A-B** (c, 5.0 x 10<sup>-5</sup> M) have been prepared in CHCl<sub>3</sub> for UV-vis and fluorescence spectroscopy, based on dilution experiments. It is a basic optimization step for this class of gelation to determine the highest permissible concentration that can be employed for photophysical studies. Actually, proper gelation occurs using 2.0 x  $10^{-2}$  M concentration of **A-B** (mentioned in experimental section 2.6) which was exceedingly high to carry out photophysical studies. Therefore, an intermediate concentration less than 2.0 x  $10^{-2}$  M had to be determined which should also be suitable for measuring photophysical data without any significant change in properties of **A-B**. On dilution from ~ $10^{-4}$  to  $10^{-7}$  M, **A-B** did not exhibit any significant decomposition or dissociation and displayed only an obvious decrease in optical and fluorescence intensity (Fig. S10, ESI). It clearly indicated that an intermediate concentration i.e.  $5.0 \times 10^{-5}$  M can be used for UV-vis and fluorescence studies.

#### Preparation of stock solutions for UV-vis and fluorescence study:

 $10^{-2}$  M solutions for **A** and **B** have been prepared by dissolving 0.1 equiv. (**A**, 80.6; **B**, 101.4 mg) in 10 mL of CHCl<sub>3</sub>. This solution was further diluted 200 times by adding CHCl<sub>3</sub> to obtain 5.0 x  $10^{-5}$  M solutions which were directly used for photophysical studies.



**Fig. S1** (a) Demonstration of gelation using complex **A** and **B**. **MG**<sub>A</sub> and **MG**<sub>B</sub> were tested by inverted vial method. (b) **A-B** and **MG**<sub>A</sub>-**MG**<sub>B</sub> observed under UV-vis lights ( $\lambda$ = 365 nm).



**Fig. S2** FT-IR spectra for (a) **HL**<sub>A</sub> and (b) Complex **A**. On comparing both, a significant shift in the vibration frequency associated with imine linkage from 1616 to 1608 cm<sup>-1</sup> has been noted while there was no significant change in frequency of band associated with ester linked >C=O. This indicated that imine linked N has involved in coordination bonding with metal (Zn<sup>II</sup>) thereby substantiating the formation of complex **A** from **HL**<sub>A</sub>.



Fig. S3 <sup>1</sup>H-NMR spectra (in CDCl<sub>3</sub>) for (a) HL<sub>A</sub> and (b) HL<sub>B</sub>.



Fig. S4 <sup>1</sup>H-NMR spectra (in DMSO-d<sub>6</sub>) for (a) A [ $Zn^{II}(L_A)_2$ ] and (b) B [ $Zn^{II}(L_B)_2$ ].



Fig. S5 <sup>13</sup>C-NMR spectra for HL<sub>A</sub> and HL<sub>B</sub>.



Fig. S6 <sup>13</sup>C-NMR spectra for complexes A and B.



**Fig. S7** Mass (HRMS-QTOF) spectra obtained for (a) **HL**<sub>A</sub> and (b) **HL**<sub>B</sub> in positive mode. Molecular ion peaks were clearly observed with good relative intensity for both which signified the formulation for ligands as  $C_{20}H_{21}NO_6$  and  $C_{26}H_{25}N_3O_6$ , respectively.



**Fig. S8** Mass (HRMS-QTOF) spectra obtained for (a) **A** and (b) **B** in positive mode. Existence of Molecular ion peaks signified their formulations as  $C_{40}H_{40}N_2O_{12}Zn$  and  $C_{52}H_{48}N_6O_{12}Zn$ , respectively.



**Fig. S9** Gelation for **B** shown in presence of NaOH in different ratios i.e. from 1:1 to 1:6 equiv. and checked via inverted vial method. Appropriate gelation occurred in presence of  $\geq$ 4.0 equiv. of NaOH.



**Fig. S10** (a) UV-vis spectra recorded for showing absorbance for **A** and (b) **B** with decrease in concentration from  $10^{-4}$  to  $\sim 10^{-7}$  M called dilution experiments which is one of the basic optimization steps to determine permissible concentration of **A**-**B** to perform photophysical studies. (c) Similar optimization with dilution of **A** from  $10^{-4}$  to  $\sim 10^{-7}$  M concentration using fluorescence spectroscopy. (d), (e) and (f) display the plots for absorption and emission vs concentration for **A** and **B** at their characteristic wavelengths. (d) Absorbance at 302 nm for **A** (e) Absorbance at 341 nm for **B**. (f) Emission at 520 nm for **A**.



**Fig. S11** The first and the last spectra from the UV/vis titration graph for **A** vs NaOH showing significant hypso-chromic shift  $(\Delta\lambda)$  of ~15 nm on reaching from  $\lambda$  (410 nm) to  $\lambda_{gel}$  (395 nm).

**Fig. S12** The first and the last spectra from the UV/vis titration graph for **B** vs NaOH showing significant hypso-chromic shift  $(\Delta\lambda)$  of 25 nm on reaching from  $\lambda$  (~438 nm) to  $\lambda_{gel}$  (~413 nm).





**Fig. S14** (a) UV-vis titration for **A** and (b) **B** at  $\sim 10^{-7}$  M concentration in presence of NaOH solution displaying similar hypsochromism with less absorbance.



**Fig. S15** Additional plots for absorption and emission vs. NaOH concentration at particular wavelength showing (a) Variation of absorption at 395 nm for **A**. (b) Variation of absorption at 413 nm for **B**. (c) Variation of emission at 439 nm for **A** and (d) Variation of emission at 520 nm for **A**.



Fig. S16 Temperature dependent UV-vis spectra for (a)  $MG_A$  and (b)  $MG_B$ . (c) Temperature dependent fluorescence spectra for  $MG_A$ . (d) Fluorescence decay graph for complex **A**.



**Fig. S17** (a) First half of fluorescence titration for **A**+NaOH displaying conversion of esters into carboxylates. (b) Second half of fluorescence titration spectra for **A**+NaOH signifying the CT followed by aggregation. It substantiated that aggregation started to occur after a threshold conversion of **A** into **MG**<sub>A</sub> via conformational transformation called as AICT (c) Combined full titration spectra showing the gelation of **A**.



**Fig. S18** A portion from <sup>1</sup>H NMR titration spectra for **A** in presence of 3.0 equiv. of NaOH showing significant upfield shift of signal associated with  $-OCH_3$  proton ( $\Delta\delta$ , 0.33 ppm). It is indicative of a significant conformational transformation induced in presence of NaOH as a result of ester to carboxylate conversion.



**Fig. S19** <sup>1</sup>H NMR titration spectra for **B** (CDCl<sub>3</sub>) + NaOH (CD<sub>3</sub>OD; 0 - 4.0 equiv.). Similar changes were evident as observed for **A** + NaOH except that the signal for -C<u>H</u>=N- ( $\delta$ , 8.59 ppm) did not disappear (possibly due to CDCl<sub>3</sub> bond did not break) but undergone upfield shifting and broadening those might be relevant for planar  $\pi$ -interactions.



**Fig. S20** A portion from <sup>1</sup>H NMR titration spectra for **B** in presence of 1.0 equiv. of NaOH showing significant upfield shift of signal associated with  $-OCH_3$  proton ( $\Delta\delta$ , 0.32 ppm). It substantiated a significant tendency towards conformational transformations induced by NaOH as indicated for **A** + NaOH.



**Fig. S21** DFT optimized structures representing (a) HOMO of **A** (Left hand side) and **B** (Right hand side) and (b) LUMO of **A** (Left hand side) and **B** (Right hand side). The theoretically optimized structures exhibited t<sub>d</sub> coordination geometry around Zn<sup>II</sup>. It was observed that most of the electron density is localized mainly on the o-vanillin core (in **A**) and p-a-p (in **B**) suggesting that the electron density has preferred to stabilize away from metal centre which induced a charge separation and thereby dipole moment. It was considered as a key factor for induced gelation under saponification conditions.

New Journal of Chemistry



**Fig. S22** DFT optimized structures representing the progelators (a) HOMO of  $MG_A$  (Left hand side) and  $MG_B$  (Right hand side) and (b) LUMO of  $MG_A$  (Left hand side) and  $MG_B$  (Right hand side). These displayed similar t<sub>d</sub> geometrical environment around the metal centre but entirely different from their parent complexes **A** and **B** in their conformational arrangements. Most of the *e*-den is localized on the o-vanillin core (**A**) and pap core (**B**) suggesting that *e*-den is stabilized away from the metal centre which consequently caused charge separation between the centre and the periphery. It has been considered as a key factor for gelation to take place under saponification induced conditions.



Fig. S23 DFT optimized structures of A-B and MG<sub>A</sub>-MG<sub>B</sub> (hydrogens are omitted for clarity). Theoretical studies revealed that each couple of the complex (A and B) and corresponding saponified products (MG<sub>A</sub>-MG<sub>B</sub>) exhibits differences in dipole moments i.e. 2.18 and 3.19 Debye for A-MG<sub>A</sub> and B-MG<sub>B</sub> pairs, respectively. Therefore, it substantiated their comparative tendencies towards gelation as B > A which explained the fact why complex A took more time to undergo gelation as compared to B. This fact has also been reasoned by observing large (4.082 Å) and small (4.073 Å) centroid-centroid distances in MG<sub>A</sub> and MG<sub>B</sub>, respectively substantiating increasing gelation efficiency from A to B.

|                                                                                                                                                                                                       | omplex A                                                                                                              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Complex B                                                                                                               |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------|
| Rie Name                                                                                                                                                                                              | A1                                                                                                                    | r            | File Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A                                                                                                                       | 2          |
| File Type                                                                                                                                                                                             | bt                                                                                                                    | n            | Rie Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                         | -<br>h     |
| Calculation Type                                                                                                                                                                                      | FOP                                                                                                                   | r            | Calculation Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FOP                                                                                                                     | т          |
| Calculation Method                                                                                                                                                                                    | RB3LY                                                                                                                 | >            | Calculation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BB3LY                                                                                                                   | p          |
| Basis Set                                                                                                                                                                                             | 6-31G(D,P                                                                                                             | <b>b</b>     | Rasis Sat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6316/0                                                                                                                  | n          |
| Charge                                                                                                                                                                                                |                                                                                                                       | 0            | Chame                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0510(0,1                                                                                                                | 0          |
| Spin                                                                                                                                                                                                  | Single                                                                                                                | t            | Snin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sinds                                                                                                                   | •          |
| Total Energy                                                                                                                                                                                          | -4339.8616647                                                                                                         | 7 a.u.       | Total Fnemy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -5020 9033423                                                                                                           | а<br>6 ан  |
| RMS Gradient Norm                                                                                                                                                                                     | 0.0000047                                                                                                             | 6 a.u.       | RMS Gradient Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0000015                                                                                                               | 1 au       |
| Imaginary Freq                                                                                                                                                                                        |                                                                                                                       |              | Inacinary Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |            |
| Dipole Moment                                                                                                                                                                                         | 1.442                                                                                                                 | Debye        | Dinale Moment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 591                                                                                                                   | 5 Dahua    |
| 🕄 G4:M1:V1 - Gaussian Cal                                                                                                                                                                             | Iculation Summary                                                                                                     |              | × 🕄 G3:M1:V1 - Gaussian (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculation Summary                                                                                                     | J Dabye    |
| G4:M1:V1 - Gaussian Cal                                                                                                                                                                               | Iculation Summary                                                                                                     |              | X 🕄 G3:M1:V1 - Gaussian G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculation Summary                                                                                                     |            |
| G4:M1:V1 - Gaussian Cal                                                                                                                                                                               | Iculation Summary                                                                                                     |              | X 1 G3:M1:V1 - Gaussian C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calculation Summary                                                                                                     |            |
| G4:M1:V1 - Gaussian Cal                                                                                                                                                                               | Iculation Summary<br>MG <sub>A</sub><br>T1<br>Jch                                                                     |              | K     Image: Comparison of the compariso | Calculation Summary<br>MG <sub>B</sub><br>k1<br>fch                                                                     |            |
| G4:M1:V1 - Gaussian Cal                                                                                                                                                                               | Iculation Summary<br>MGA<br>T1<br>Jch<br>FOPT                                                                         |              | K     G3:M1:V1 - Gaussian (Comparison)       File Name       File Type       Calculation Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculation Summary<br>MG<br>k1<br>fch<br>FOPT                                                                          |            |
| G4:M1:V1 - Gaussian Cal<br>File Name<br>File Type<br>Calculation Type<br>Calculation Method                                                                                                           | Iculation Summary<br>MGA<br>T1<br>fch<br>FOPT<br>RB3LYP                                                               |              | G3:M1:V1 - Gaussian C     File Name     File Type     Calculation Type     Calculation Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculation Summary<br>MG<br>k1<br>fch<br>FOPT<br>RB3LYP                                                                |            |
| G4:M1:V1 - Gaussian Cal<br>File Name<br>File Type<br>Calculation Type<br>Calculation Method<br>Basis Set                                                                                              | Iculation Summary<br>T1<br>fch<br>FOPT<br>RB3LYP<br>6-31G(D,P)                                                        |              | K     Image: Constraint of the second s | Calculation Summary  MG  k1  fch  FOPT  RB3LYP  6-31G(D,P)                                                              |            |
| G4:M1:V1 - Gaussian Cal<br>File Name<br>File Type<br>Calculation Type<br>Calculation Method<br>Basis Set<br>Charge                                                                                    | Iculation Summary<br>MGA<br>T1<br>fch<br>FOPT<br>RB3LYP<br>6-31G(D,P)<br>0                                            |              | K     Image: Constraint of the second s | Calculation Summary Calculation Summary K1 fch FOPT RB3LYP 6-31G(D.P) 0                                                 |            |
| G4:M1:V1 - Gaussian Cal<br>File Name<br>File Type<br>Calculation Type<br>Calculation Method<br>Basis Set<br>Charge<br>Spin                                                                            | Iculation Summary  MGA T1 fch FOPT RB3LYP 6-31G(D,P) 0 Singlet                                                        |              | K     Image: Constraint of the second s | Calculation Summary Calculation Summary Calculation Summary K1 fch fch FOPT RB3LYP 6-31G(D.P) 0 Singlet                 |            |
| G4:M1:V1 - Gaussian Cal     G4:M1:V1 - Gaussian Cal     Gaussian Cal     Gaussian Cal     Gaussian Cal     Calculation Type     Calculation Method     Basis Set     Charge     Spin     Total Energy | Iculation Summary  MGA T1 fch FOPT RB3LYP 6-31G(D,P) 0 Singlet -4672.50179264                                         | au.          | X       Image: Comparison of the image: Comparison of th               | Calculation Summary Calculation Summary K1                                          | a.u.       |
| G4:M1:V1 - Gaussian Cal<br>File Name<br>File Type<br>Calculation Type<br>Calculation Method<br>Basis Set<br>Charge<br>Spin<br>Total Energy<br>RMS Gradient Norm                                       | Iculation Summary<br>MGA<br>T1<br>fch<br>FOPT<br>RB3LYP<br>6-31G(D,P)<br>0<br>Singlet<br>-4672.50179264<br>0.00000649 | a.u.<br>a.u. | K       Image: Comparison of the second               | Calculation Summary<br>MGB<br>k1<br>fch<br>FOPT<br>RB3LYP<br>6-31G(D,P)<br>0<br>Singlet<br>-5353.54857519<br>0.00000714 | a.u.       |
| G4:M1:V1 - Gaussian Cal<br>File Name<br>File Type<br>Calculation Type<br>Calculation Method<br>Basis Set<br>Charge<br>Spin<br>Total Energy<br>RMS Gradient Norm<br>Imaginary Freq                     | Iculation Summary T1 fch FOPT RB3LYP 6-31G(D,P) 0 Singlet -4672.50179264 0.00000649                                   | a.u.<br>a.u. | K       Imaginary Freq         G3:M1:V1 - Gaussian (Comparison)         File Name         File Type         Calculation Type         Calculation Method         Basis Set         Charge         Spin         Total Energy         RMS Gradient Norm         Imaginary Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Calculation Summary<br>MGB<br>k1<br>fch<br>FOPT<br>RB3LYP<br>6-31G(D,P)<br>0<br>Singlet<br>-5353.54857519<br>0.00000714 | au.<br>au. |

 $\Delta \mu (MG_A-A) = = 2.18 \text{ Debye}$   $\Delta \mu (MG_B-B) = 3.19 \text{ Debye}$ 

Fig. S24 Result summaries obtained from DFT optimization for model structures of A-B and MGA-MGB showing their dipole moments. A substantial increase in dipole moment observed in the order  $\Delta \mu$  (**MG**<sub>B</sub>–**B**) >  $\Delta \mu$  (**MG**<sub>A</sub>–**A**) indicated gelation efficiency for **B** > **A**.



Fig. S25 DFT optimized structures of  $MG_A-MG_B$  (hydrogens are omitted for clarity) to show the difference in centroid-centroid distances between the respective isophthalate rings.

#### New Journal of Chemistry

## Table T1. Crystal data and structure refinement for HL<sub>B</sub>.

| Identification code               | shelxl                               |                                   |
|-----------------------------------|--------------------------------------|-----------------------------------|
| Empirical formula                 | $C_{26}  H_{25}  N_3 O_6$            |                                   |
| Formula weight                    | 951.010                              |                                   |
| Temperature                       | 293(2) K                             |                                   |
| Wavelength                        | 0.71073 Å                            |                                   |
| Crystal system                    | Triclinic                            |                                   |
| Space group                       | <i>P</i> -1                          |                                   |
| Unit cell dimensions              | a = 7.52118 (14) Å                   | α= 62.200 (2)°                    |
|                                   | b = 19.1168 (4) Å                    | β= 80.9796 (15)°                  |
|                                   | c = 19.7439 (4) Å                    | $\gamma = 87.5397 \ (16)^{\circ}$ |
| Volume                            | 2478.6 (1) Å <sup>3</sup>            |                                   |
| Z                                 | 2                                    |                                   |
| Density (calculated)              | 1.274 g/cm <sup>3</sup>              |                                   |
| Absorption coefficient ( $\mu$ )  | $0.092 \text{ mm}^{-1}$              |                                   |
| F(000)                            | 1000                                 |                                   |
| Crystal size                      | 0.20 x 0.10 x 0.05 mm <sup>3</sup>   |                                   |
| Theta range for data collection   | 2.04 to 25.00°.                      |                                   |
| Reflections collected             | 71966                                |                                   |
| Independent reflections           | 8723 [R(int) = 0.0311]               |                                   |
| Data completeness                 | 1.000                                |                                   |
| Absorption correction             | Semi-empirical from equ              | ivalents                          |
| Max. and min. transmission        | 0.989 and 0.995                      |                                   |
| Refinement method                 | Full-matrix least-squares            | on F <sup>2</sup>                 |
| Data / restraints / parameters    | 8723 / 357 / 796                     |                                   |
| Goodness-of-fit on F <sup>2</sup> | 1.0566                               |                                   |
| Final R indices $[I>2\sigma(I)]$  | R1 = 0.0619, wR2 = 0.19              | 020                               |
| R indices (all data)              | R1 = 0.0948, wR2 = 0.21              | 75                                |
| Largest peak and deepest hole     | 0.7678 and -0.2667 e.Å <sup>-3</sup> |                                   |

| Atom | Atom | Length/Å | Atom | Atom | Length/Å | Atom | Atom | Length/Å |
|------|------|----------|------|------|----------|------|------|----------|
| C1   | C2   | 1.383(3) | C15  | C16  | 1.414(3) | N2   | C18  | 1.434(3) |
| C1   | C6   | 1.386(3) | C16  | C17  | 1.368(3) | N3   | C21  | 1.439(3) |
| C2   | C3   | 1.383(3) | C17  | C18  | 1.396(3) | 01   | C7   | 1.326(3) |
| C2   | C7   | 1.489(3) | C18  | C19  | 1.371(3) | 01   | C8   | 1.460(3) |
| C3   | C4   | 1.387(3) | C21  | C22  | 1.383(4) | 02   | C7   | 1.206(3) |
| C4   | C5   | 1.391(3) | C21  | C26  | 1.369(3) | 03   | C10  | 1.323(3) |
| C5   | C6   | 1.387(3) | C22  | C23  | 1.385(4) | 03   | C11  | 1.458(3) |
| C6   | C10  | 1.490(3) | C23  | C24  | 1.367(4) | 04   | C10  | 1.190(3) |
| C8   | C9   | 1.475(4) | C24  | C25  | 1.368(4) | 05   | C16  | 1.363(3) |
| C11  | C12  | 1.405(5) | C25  | C26  | 1.369(4) | 05   | C20  | 1.423(3) |
| C13  | C14  | 1.440(3) | N1   | C4   | 1.419(3) | 06   | C15  | 1.334(3) |
| C14  | C15  | 1.401(3) | N1   | C13  | 1.273(3) |      |      |          |
| C14  | C19  | 1.391(3) | N2   | N3   | 1.241(3) |      |      |          |

**Table T2**. Selected bond lengths [Å] and bond angles [°] for HLB.

| Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°  |
|------|------|------|------------|------|------|------|----------|
| C1   | C6   | C10  | 118.4(2)   | C22  | C21  | C26  | 120.1(2) |
| C1   | C2   | C3   | 119.6(2)   | C23  | C24  | C25  | 119.3(3) |
| C1   | C6   | C5   | 120.4(2)   | C24  | C25  | C26  | 120.7(3) |
| C1   | C2   | C7   | 122.8(2)   | N1   | C13  | C14  | 122.4(2) |
| C2   | C3   | C4   | 121.2(2)   | N1   | C4   | C3   | 116.3(2) |
| C2   | C1   | C6   | 119.8(2)   | N1   | C4   | C5   | 124.8(2) |
| C3   | C4   | C5   | 118.9(2)   | N2   | C18  | C17  | 125.0(2) |
| C3   | C2   | C7   | 117.6(2)   | N2   | C18  | C19  | 115.0(2) |
| C4   | N1   | C13  | 123.2(2)   | N2   | N3   | C21  | 112.8(2) |
| C4   | C5   | C6   | 120.0(2)   | N3   | N2   | C18  | 114.2(2) |
| C5   | C6   | C10  | 121.2(2)   | N3   | C21  | C22  | 123.8(2) |
| C7   | 01   | C8   | 116.07(19) | N3   | C21  | C26  | 116.1(2) |
| C10  | 03   | C11  | 117.3(2)   | 01   | C7   | C2   | 113.5(2) |
| C13  | C14  | C15  | 121.0(2)   | 01   | C8   | C9   | 108.4(2) |
| C13  | C14  | C19  | 120.1(2)   | 01   | C7   | 02   | 123.0(2) |
| C14  | C15  | C16  | 119.6(2)   | 02   | C7   | C2   | 123.5(2) |
| C14  | C19  | C18  | 121.2(2)   | 03   | C11  | C12  | 109.3(3) |
| C15  | C16  | C17  | 120.0(2)   | 03   | C10  | C6   | 112.2(2) |
| C15  | C14  | C19  | 118.9(2)   | 03   | C10  | 04   | 123.6(2) |
| C16  | C17  | C18  | 120.2(2)   | 04   | C10  | C6   | 124.1(2) |
| C16  | 05   | C20  | 118.2(2)   | 05   | C16  | C15  | 114.1(2) |
| C17  | C18  | C19  | 120.0(2)   | 05   | C16  | C17  | 125.8(2) |
| C21  | C22  | C23  | 118.6(3)   | 06   | C15  | C14  | 122.2(2) |
| C21  | C26  | C25  | 120.2(3)   | 06   | C15  | C16  | 118.3(2) |
| C22  | C23  | C24  | 121.1(3)   |      |      |      |          |

# New Journal of Chemistry

## Table T3. Crystal data and structure refinement for Complex B.

| Identification code               | shelxl                             |                                  |
|-----------------------------------|------------------------------------|----------------------------------|
| Empirical formula                 | $C_{52}H_{48}N_6O_{12}Zn$          |                                  |
| Formula weight                    | 1012.26                            |                                  |
| Temperature                       | 293 (2) K                          |                                  |
| Wavelength                        | 0.71073 Å                          |                                  |
| Crystal system                    | Triclinic                          |                                  |
| Space group                       | P -1                               |                                  |
| Unit cell dimensions              | a = 15.0993 (2) Å                  | $\alpha = 100.281 (2)^{\circ}$   |
|                                   | b = 17.6129 (4) Å                  | $\beta = 90.399 \ (2)^{\circ}$   |
|                                   | c = 20.3424 (5) Å                  | $\gamma = 102.672 \ (2)^{\circ}$ |
| Volume                            | 5187.4 (2) Å <sup>3</sup>          |                                  |
| Ζ                                 | 4                                  |                                  |
| Density (calculated)              | 1.299 g/cm <sup>3</sup>            |                                  |
| Absorption coefficient            | 0.539 mm <sup>-1</sup>             |                                  |
| F(000)                            | 2112                               |                                  |
| Crystal size                      | 0.30 x 0.15 x 0.08 mm <sup>3</sup> |                                  |
| Theta range for data collection   | 2.397 to 23.000°.                  |                                  |
| Reflections collected             | 120591                             |                                  |
| Independent reflections           | 14424 [R(int) = 0.0582]            |                                  |
| Data completeness                 | 0.998                              |                                  |
| Absorption correction             | Semi-empirical from equ            | ivalents                         |
| Refinement method                 | Full-matrix least-squares          | s on F <sup>2</sup>              |
| Data / restraints / parameters    | 14424 / 455 / 1444                 |                                  |
| Goodness-of-fit on F <sup>2</sup> | 1.0150                             |                                  |
| Final R indices [I>2sigma(I)]     | R1 = 0.0607                        |                                  |
| R indices (all data)              | R1 = 0.0995, wR2 = 0.19            | 935                              |
| Largest diff. peak and hole       | 0.7100 and -0.4200 e.Å-            | 3                                |

| Atom | Atom | Length/Å  |
|------|------|-----------|------|------|-----------|------|------|-----------|------|------|-----------|
| C1   | C2   | 1.400(6)  | C15  | 05   | 1.294(5)  | C32  | C27  | 1.389(6)  | C44  | N5   | 1.427(6)  |
| C1   | C6   | 1.382(6)  | C16  | C15  | 1.433(6)  | C32  | C31  | 1.378(7)  | C46  | 012  | 1.434(6)  |
| C1   | N1   | 1.418(5)  | C16  | 06   | 1.359(5)  | C33  | 07   | 1.186(7)  | C47  | C52  | 1.362(8)  |
| C3   | C2   | 1.378(6)  | C17  | C16  | 1.370(6)  | C33  | 08   | 1.325(8)  | C47  | N6   | 1.462(7)  |
| C3   | C4   | 1.373(6)  | C17  | C18  | 1.403(7)  | C34  | 08   | 1.471(9)  | C48  | C47  | 1.360(8)  |
| C3   | C7   | 1.497(7)  | C18  | N2   | 1.421(6)  | C35  | C34  | 1.140(14) | C48  | C49  | 1.376(9)  |
| C4   | C5   | 1.390(6)  | C19  | C14  | 1.426(6)  | C36  | C31  | 1.493(8)  | C50  | C49  | 1.340(10) |
| C5   | C6   | 1.384(6)  | C19  | C18  | 1.354(7)  | C36  | 010  | 1.311(7)  | C50  | C51  | 1.366(10) |
| C7   | 01   | 1.206(6)  | C20  | 06   | 1.423(6)  | C36  | 09   | 1.215(7)  | C51  | C52  | 1.374(8)  |
| C7   | 02   | 1.312(6)  | C22  | C21  | 1.324(10) | C37  | C38  | 1.454(9)  | 011  | Zn1  | 1.917(3)  |
| C8   | 02   | 1.457(6)  | C23  | C22  | 1.415(10) | C37  | 010  | 1.458(7)  | 05   | Zn1  | 1.912(3)  |
| C9   | C8   | 1.437(10) | C24  | C23  | 1.284(14) | C39  | C40  | 1.425(6)  | N1   | Zn1  | 2.009(3)  |
| C10  | C5   | 1.486(7)  | C25  | C24  | 1.353(14) | C40  | C45  | 1.419(6)  | N3   | C21  | 1.442(7)  |
| C10  | 03   | 1.205(6)  | C25  | C26  | 1.419(12) | C41  | C40  | 1.399(6)  | N3   | N2   | 1.250(6)  |
| C10  | 04   | 1.306(6)  | C26  | C21  | 1.370(10) | C41  | 011  | 1.302(5)  | N4   | C27  | 1.439(6)  |
| C11  | 04   | 1.456(7)  | C28  | C27  | 1.383(6)  | C42  | C41  | 1.429(6)  | N4   | C39  | 1.303(5)  |
| C12  | C11  | 1.418(10) | C29  | C28  | 1.379(7)  | C42  | C43  | 1.382(6)  | N4   | Zn1  | 2.012(4)  |
| C13  | N1   | 1.303(5)  | C29  | C30  | 1.374(7)  | C42  | 012  | 1.360(6)  | N6   | N5   | 1.231(6)  |
| C14  | C13  | 1.419(6)  | C29  | C33  | 1.484(8)  | C44  | C43  | 1.393(7)  |      |      |           |
| C14  | C15  | 1.418(6)  | C30  | C31  | 1.380(7)  | C44  | C45  | 1.346(7)  |      |      |           |

 Table T4.
 Selected bond lengths [Å] and bond angles [°] for Complex B.

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°   | Atom | Atom | Atom | Angle/°   |
|------|------|------|----------|------|------|------|-----------|------|------|------|-----------|
| C1   | N1   | Zn1  | 119.1(3) | C14  | C15  | C16  | 118.0(4)  | C28  | C27  | C32  | 119.1(4)  |
| C1   | C6   | C5   | 120.5(4) | C15  | 05   | Zn1  | 126.8(3)  | C28  | C27  | N4   | 116.7(4)  |
| C2   | C1   | N1   | 124.0(4) | C15  | C14  | C13  | 124.3(4)  | C28  | C29  | C33  | 122.8(6)  |
| C2   | C3   | C7   | 120.6(5) | C15  | C14  | C19  | 118.7(4)  | C29  | C28  | C27  | 120.7(5)  |
| C3   | C4   | C5   | 119.7(4) | C16  | 06   | C20  | 117.5(4)  | C29  | C30  | C31  | 120.6(5)  |
| C3   | C2   | C1   | 119.9(4) | C16  | C17  | C18  | 119.9(4)  | C30  | C31  | C36  | 118.4(5)  |
| C4   | C5   | C10  | 119.7(5) | C17  | C16  | C15  | 121.3(4)  | C30  | C29  | C28  | 119.6(5)  |
| C4   | C3   | C2   | 120.7(4) | C17  | C18  | N2   | 123.7(5)  | C30  | C29  | C33  | 117.6(6)  |
| C4   | C3   | C7   | 118.6(5) | C18  | C19  | C14  | 121.4(4)  | C31  | C32  | C27  | 120.4(5)  |
| C6   | C5   | C4   | 119.9(4) | C19  | C18  | C17  | 120.6(4)  | C32  | C27  | N4   | 124.2(4)  |
| C6   | C5   | C10  | 120.5(5) | C19  | C18  | N2   | 115.7(5)  | C32  | C31  | C30  | 119.7(5)  |
| C6   | C1   | C2   | 119.2(4) | C21  | C22  | C23  | 119.6(9)  | C32  | C31  | C36  | 121.9(5)  |
| C6   | C1   | N1   | 116.8(4) | C21  | C26  | C25  | 119.5(10) | C33  | 08   | C34  | 114.9(7)  |
| C7   | 02   | C8   | 116.8(5) | C22  | C21  | C26  | 120.0(7)  | C35  | C34  | 08   | 115.1(13) |
| C9   | C8   | 02   | 108.1(6) | C22  | C21  | N3   | 124.5(7)  | C36  | 010  | C37  | 115.9(5)  |
| C10  | 04   | C11  | 117.2(5) | C23  | C24  | C25  | 122.5(11) | C38  | C37  | 010  | 107.8(6)  |
| C12  | C11  | 04   | 107.0(6) | C24  | C23  | C22  | 120.6(11) | C39  | N4   | C27  | 119.3(4)  |
| C13  | N1   | C1   | 119.7(4) | C24  | C25  | C26  | 117.7(10) | C39  | N4   | Zn1  | 117.9(3)  |
| C13  | N1   | Zn1  | 121.1(3) | C26  | C21  | N3   | 115.5(7)  | C40  | C41  | C42  | 117.8(4)  |

| Atom | Atom | Atom | Angle/°  | Atom | Atom | Atom | Angle/°    | Atom | Atom | Atom | Angle/°    |
|------|------|------|----------|------|------|------|------------|------|------|------|------------|
| C13  | C14  | C19  | 117.0(4) | C27  | N4   | Zn1  | 122.7(3)   | C41  | 011  | Zn1  | 123.8(3)   |
| C41  | C40  | C45  | 118.8(4) | C52  | C47  | N6   | 124.8(6)   | 05   | C15  | C14  | 124.6(4)   |
| C41  | C40  | C39  | 125.6(4) | N1   | Zn1  | N4   | 118.13(15) | 05   | C15  | C16  | 117.4(4)   |
| C42  | 012  | C46  | 117.4(4) | N1   | C13  | C14  | 127.8(4)   | 06   | C16  | C17  | 125.9(4)   |
| C42  | C43  | C44  | 119.6(5) | N2   | N3   | C21  | 112.4(5)   | 06   | C16  | C15  | 112.8(4)   |
| C43  | C42  | C41  | 121.4(5) | N3   | N2   | C18  | 114.0(5)   | 07   | C33  | 08   | 123.2(7)   |
| C43  | C44  | N5   | 125.8(5) | N4   | C39  | C40  | 128.8(4)   | 07   | C33  | C29  | 125.2(8)   |
| C44  | C45  | C40  | 122.3(5) | N5   | N6   | C47  | 112.4(5)   | 08   | C33  | C29  | 111.6(6)   |
| C45  | C40  | C39  | 115.6(4) | N6   | N5   | C44  | 113.9(5)   | 09   | C36  | 010  | 124.2(6)   |
| C45  | C44  | C43  | 120.0(4) | 01   | C7   | 02   | 124.8(5)   | 09   | C36  | C31  | 122.3(6)   |
| C45  | C44  | N5   | 114.2(5) | 01   | C7   | C3   | 122.1(5)   | 010  | C36  | C31  | 113.5(6)   |
| C47  | C52  | C51  | 118.9(7) | 02   | C7   | C3   | 113.1(5)   | 011  | Zn1  | N1   | 117.38(14) |
| C47  | C48  | C49  | 120.2(7) | 03   | C10  | 04   | 123.5(5)   | 011  | Zn1  | N4   | 97.22(14)  |
| C48  | C47  | C52  | 120.3(6) | 03   | C10  | C5   | 124.1(5)   | 011  | C41  | C40  | 124.5(4)   |
| C48  | C47  | N6   | 114.9(6) | 04   | C10  | C5   | 112.4(5)   | 011  | C41  | C42  | 117.7(4)   |
| C49  | C50  | C51  | 120.3(7) | 05   | Zn1  | 011  | 115.09(14) | 012  | C42  | C43  | 124.5(5)   |
| C50  | C49  | C48  | 119.7(7) | 05   | Zn1  | N1   | 94.85(13)  | 012  | C42  | C41  | 114.1(4)   |
| C50  | C51  | C52  | 120.5(7) | 05   | Zn1  | N4   | 115.63(14) |      |      |      |            |