Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Structure-function correlation of mononuclear nonheme copper(II) compounds based on ligand topology and phenoxazinone synthase activity

Sarvesh S. Harmalkar, Vishnu R. Chari, Rohan K. Kunkalekar Sunder N. Dhuri^{*} School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, India *corresponding author: sndhuri@unigoa.ac.in

Synthesis and characterization of BQPN

BQPN-H₂ was prepared by modification of a reported procedure [1]. To a stirred THF solution (40 mL) of **BQPN-H**₂ (3.8 g, 10.86 mmol), 21.0 mL of aqueous formaldehyde (37%) (6.48 g, 217 mmol) was added. The solution slowly turned dark red after ~5min. To this red mixture, the sodium cyanoborohydride (1.38 g, 22.0 mmol) was added slowly till a yellow colour solution was obtained. The solution was stirred for ~24 h and THF was removed which afforded yellow crude powder. This crude product on recrystallization in hot ethanol resulted in a crystalline solid. Yield = 3.0 g. Anal. Calc. for C₂₃H₂₄N₄ **BQPN** (MW = 356.46 g mol⁻¹): C, 77.50; H 6.79; N 15.72; Found: C, 78.35; H, 6.92; N, 15.06. Selected IR bands (KBr, cm-1): 1562 ν (C-N); 3134–2746 ν (CH).

Fig. S1 – Comparative IR spectra's of BQPNH₂ and BQPN.

Synthesis of Cu(II) complex [Cu^{II}(BQEN)(CH₃CN)](ClO₄)₂ (1)

CHCl₃ solution of BQEN (0.43 g / 1.26mmol) was added dropwise to the acetonitrile solution of Cu(ClO₄)₂.6H₂O (0.462 g / 1.26 mmol) resulting in an blue solution. The solution was left for stirring for 12 h and then filtered. Diethyl ether solution was added slowly to yield blue coloured compound. Yield = 0.7g. Crystals suitable for single crystal XRD were grown by slow diffusion of diethyl ether in acetonitrile solution. Anal. Calcd. for C₂₄H₂₅N₅Cl₂O₈Cu **1** (MW = 645.93 g mol⁻¹): C, 44.63; H, 3.90; N, 10.84%. Found: C, 44.90; H, 3.65; N, 10.59%.

IR data (KBr, cm⁻¹): 3184–2777 v(CH), 1091, 623 v(ClO₄⁻¹). UV–Vis. λmax(nm) (ε, in L mol⁻¹ cm⁻¹) in CH₃CN: 201 (319597), 230 (233240), 301 (60290), 612 (624).

Synthesis of Cu(II) complex [Cu^{II}(BQPN)(CH₃CN)](ClO₄)₂ (2)

CHCl₃ solution of BQPN (0.45 g / 1.26mmol) was added dropwise to the acetonitrile solution of Cu(ClO₄)₂.6H₂O (0.462 g / 1.26 mmol) resulting in an blue solution. The solution was left for stirring for 12 h and then filtered. Diethyl ether solution was added slowly to yield blue coloured compound. Yield = 0.8g. Crystals suitable for single crystal XRD were grown by slow diffusion of diethyl ether in acetonitrile solution. Anal. Calcd. for C₂₅H₂₇N₅Cl₂O₈Cu **2** (MW = 659.96 g mol⁻¹): C, 45.50; H, 4.12; N, 10.61%. Found: C, 45.48; H, 4.28; N, 10.54%. IR data (KBr, cm⁻¹): 3199–2706 v(CH), 1089, 628 v(ClO₄⁻¹). UV–Vis. λ max(nm) (ϵ , in L mol⁻¹ cm⁻¹) in CH₃CN: 203 (298203), 227 (182402), 302 (46819), 495 (610).

Phenoxazinone synthase activity

The catalytic oxidation of H₂AP was studied by addition of $1x10^{-5}$ M solution of Cu(II) complex with 100 equiv. of 2-aminophenol (H₂AP, $1x10^{-3}$ M) in MeOH under aerobic conditions at room temperature. The catalysed conversion of H₂AP to 2- aminophenoxazine-3-one (2-APX) was monitored at a wavelength of 434 nm (time scan) [2-8] in MeOH. The oxidized product was extracted as 2-aminophenoxazinone species through column chromatography. Neutral alumina was used as a solid support in column and benzene-ethyl acetate solvent mixture was employed as an eluent mixture in the chromatographic separation. The purity of oxidative dimerization product of H₂AP was examined by 1H NMR spectral analysis as well as to identify the final product. 1H NMR data for 2-amino-3H-phenoxazine-3-one (APX), (CDCl₃, 400 MHz,) dH: 7.61 (m, 1H), 7.44 (m, 3H), 6.47 (s, 1H), 6.35 (s, 1H), 6.24 (s, 1H).

References

- 1. J. England, G. J. P. Britovsek, N. Rabadia, A. J. P. White, Inorg. Chem. 2007, 46, 3752.
- P. K. Mudi, N. Bandopadhyay, M. Joshi, M. Shit, S. Paul, A.R. Choudhury, B. Biswas, Inorg. Chim. Acta., 2020, 505, 119468.
- 3. N. C. Jana, M. Patra, P. Brand~ao, A. Panja, Inorg. Chim. Acta., 2019, 490, 163.
- 4. S. S. Massoud, T. Junk, F.A. Mautner, RSC Adv, 2015, 5, 87139.
- 5. K. Ghosh, M.G.B. Drew, S. Chattopadhyay, Inorg. Chim. Acta., 2018, 482, 23.
- 6. S. Thakur, S. Banerjee, S. Das, S. Chattopadhyay, New J. Chem., 2019, 43, 18747.

- (a) S. Pal, B. Chowdhury, M. Patra, M. Maji, B. Biswas, Spectrochim. Acta Part A: Mol. Biomol. Spectros., 2015, 144, 148; (b) A. De, D. Dey, H.R. Yadav, M. Maji, V. Rane, R.M. kadam, A.R. Choudhury, B. Biswas, J. Chem. Sci., 2016, 128, 1775.
- 8. C. K. Pal, S. Mahato, H.R. Yadav, A.R. Choudhury, B. Biswas, *Polyhedron*, 2019, **174**, 114156.

14010 011 0010	Tuote ST. Selected cond lengths, angles and Hydrogen conding I arameters for H							
Bond lengths [Å]								
Cu(1)-N(1)	2.004(2)	1.997	Cu(1)-N(2)	2.275(3)	2.236			
Cu(1)-N(3)	2.126(2)	2.239	Cu(1)-N(4)	1.973(2)	1.997			
Co(1)-N(5)	2.036(3)	2.078						
	Bond angles [°]							
N(1)-Cu(1)-N(2)	80.30(10)	81.41	N(1)-Cu(1)-N(3)	94.62(9)	96.64			
N(1)-Cu(1)-N(4)	177.15(10)	177.29	N(1)-Cu(1)-N(5)	89.11(11)	91.41			
N(2)-Cu(1)-N(3)	83.27(9)	84.56	N(2)-Cu(1)-N(4)	101.32(10)	96.53			
N(2)-Cu(1)-N(5)	101.70(12)	138.10	N(3)-Cu(1)-N(4)	83.28(10)	81.37			
N(3)-Cu(1)-N(5)	174.25(11)	137.33	N(4)-Cu(1)-N(5)	92.84(11)	91.30			

Table S1. Selected bond lengths, angles and Hydrogen bonding Parameters for 1.

Table S2 – Hydrogen bonding Parameters (Å, °) for 1.

Compound 1					
D-H···A	D-H/Å	H…A/Å	D…A/Å	D-H···A/°	
C1-H1… O3	0.930	2.336	3.050	133.33	
C13-H13B···· O1	0.960	2.652	3.509	149.01	
C13-H13B… O3	0.960	2.621	3.174	116.96	
C21-H21… N5	0.930	2.495	3.032	116.93	
$C10$ -H10B \cdots O1 ⁱ	0.960	2.452	3.308	148.40	
$C24-H24A\cdots O2^i$	0.960	2.650	3.266	122.28	
C15-H15… O7 ⁱⁱ	0.930	2.488	3.416	175.98	
C24-H24C \cdots O2 ⁱⁱⁱ	0.960	2.632	3.238	121.49	
i = [x+1, y, z], ii = [-x+1, -y+1, -z], iii = [-x, -y+1, -z+1]					

Fig. S2 – C-H···H-C interactions in 1.

Fig. S3 – Packing diagram in 1 along crystallographic a, b and c axis.

Bond lengths [Å]						
Cu(1)-N(1)	1.994(3)	2.012	Cu(1)-N(2)	2.096(2)	2.173	
Cu(1)-N(3)	2.053(3)	2.067	Cu(1)-N(4)	2.024(2)	2.109	
Co(1)-N(5)	2.283(3)	2.274				
Bond angles [°]						
N(1)-Cu(1)-N(2)	81.99(11)	81.67	N(1)-Cu(1)-N(3)	176.81(11)	177.85	
N(1)-Cu(1)-N(4)	98.90(11)	97.00	N(1)-Cu(1)-N(5)	87.25(11)	89.03	
N(2)-Cu(1)-N(3)	96.16(11)	97.84	N(2)-Cu(1)-N(4)	149.07(10)	139.74	
N(2)-Cu(1)-N(5)	118.72(11)	112.89	N(3)-Cu(1)-N(4)	84.03(11)	82.01	
N(3)-Cu(1)-N(5)	91.39(11)	93.08	N(4)-Cu(1)-N(5)	92.16(11)	107.31	

Table S3. Selected bond lengths] and angles [°] for $\mathbf{2}$.

Compound 2						
D-H···A	D-H/Å	H…A/Å	D…A/Å	D-H···A/°		
C13-H13B… O6	0.970	2.469	3.379	155.97		
$C1$ - $H1$ ···· $O2^{i}$	0.930	2.588	3.441	152.78		
C11-H11B… O4 ⁱⁱ	0.970	2.633	3.446	141.59		
C14-H14B \cdots O7 ⁱⁱ	0.960	2.551	3.457	157.41		
C16-H16… O8 ⁱⁱ	0.930	2.541	3.427	159.34		
C14-H14A \cdots O1 ⁱⁱⁱ	0.960	2.531	3.446	159.24		
C25-H25C… O3 ⁱⁱⁱ	0.960	2.647	3.429	138.96		
C25-H25B \cdots O4 ^{iv}	0.960	2.599	3.455	148.56		
i = [-x+1/2, y-1/2, -z+1/2], ii = [x+1, y, z], iii = [-x+3/2, y-1/2, -z+1/2]						
z+1/2], iv = [x+1/2, -y+3/2, z-1/2]						

Table S4– Hydrogen bonding Parameters (Å, °) for 2.

Fig. S4 – $\pi \cdots \pi$ interactions in **2**.

Fig. S5 – Packing diagram in **2** along crystallographic a, b and c axis.

Fig. S6 – X-band EPR spectra of 1 recorded at 77 K in CH_3CN .

Fig. S7 – ESI-MS spectra of 1.

Fig. S8 – Comparative IR spectra's of 1 and 2.

Fig. S9 – Comparative UV-visible spectrum of 1 and 2.

Fig. S10. ESI-MS spectra of 1 with 5 eq. H₂AP

Fig. 9. X-band EPR spectra of 2 with 5 eq. H_2AP recorded at 77 K CH₃CN.

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0056 A	Wavelength=0.71073			
Cell:	a=8.8978(2) alpha=89.505(1)	b=12.9429(3) beta=71.260(1	c=13.0536(3)) gamma=74.536(1)		
Temperature:	296 K				
	Calculated	Repo	rted		
Volume	1367.17(6)	1367	.17(6)		
Space group	P -1	P -1			
Hall group	-P 1	-P 1			
Moiety formula	C24 H25 C1 Cu N5	04, Cl 04?			
Sum formula	C24 H25 C12 Cu N5	08 C24	H25 Cl2 Cu N5 O8		
Mr	645.94	645.	94		
Dx,g cm-3	1.569	1.56	9		
Z	2	2			
Mu (mm-1)	1.051	1.05	1		
F000	662.0	662.	0		
F000'	663.50				
h,k,lmax	11,17,17	11,1	7,17		
Nref	6788	6769			
Tmin, Tmax	0.675,0.802	0.67	6,0.746		
Tmin'	0.617				
Correction method= # Reported T Limits: Tmin=0.676 Tmax=0.746 AbsCorr = MULTI-SCAN					
Data completene	ess= 0.997	Theta(max)=	28.282		
R(reflections)=	= 0.0517(5497)	wR2(reflecti	ons)= 0.1617(6769)		
S = 1.035	Npar=	364			

The following ALERTS were generated. Each ALERT has the format test-name ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level	C	
PLAT241_ALERT_2_C	High 'MainMol' Ueq as Compared to Neighbors of 03	Check
PLAT242_ALERT_2_C	Low 'MainMol' Ueq as Compared to Neighbors of C23	Check
PLAT260_ALERT_2_C	Large Average Ueq of Residue Including Cl2 0.169	Check
PLAT910_ALERT_3_C	Missing # of FCF Reflection(s) Below Theta(Min). 6	Note

Alert level G PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal .. (Note) 0.001 Degree PLAT232 ALERT 2 G Hirshfeld Test Diff (M-X) Cu1 --03 25.0 s.u. 'MainMol' Ueq as Compared to Neighbors of 'Solvent' Ueq as Compared to Neighbors of PLAT242_ALERT_2_G_Low Cl1 Check PLAT244 ALERT 4 G Low C12 Check PLAT432_ALERT_2_G Short Inter X...Y Contact 02 ..C23 3.00 Ang. 2_566 Check -x,1-y,1-z = PLAT793 ALERT 4 G Model has Chirality at N2 (Centro SPGR) S Verify PLAT793_ALERT_4_G Model has Chirality at N3 S Verify (Centro SPGR) PLAT794_ALERT_5_G Tentative Bond Valency for Cul (II) 2.21 Info PLAT883 ALERT 1 G No Info/Value for atom sites solution primary . Please Do ! PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 12 Note PLAT941_ALERT_3_G Average HKL Measurement Multiplicity 4.8 Low PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 3 Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 4 ALERT level C = Check. Ensure it is not caused by an omission or oversight 12 ALERT level G = General information/check it is not something unexpected 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 04/06/2020; check.def file version of 02/06/2020

Datablock shelx - ellipsoid plot

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) shelx

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: shelx

Bond precision:	C-C = 0.0056 A	W	avelength	=0.71073
Cell:	a=8.6168(3) b alpha=90 b	=19.1651(eta=93.22	7) 1(1)	c=16.7109(7) gamma=90
Temperature:	296 K			
	Calculated		Reported	
Volume	2755.31(18)		2755.31(1	8)
Space group	P 21/n		P 21/n	
Hall group	-P 2yn		-P 2yn	
Moiety formula	C25 H27 Cu N5, 2(C1 04)	?	
Sum formula	C25 H27 C12 Cu N5	08	C25 H27 C	12 Cu N5 08
Mr	659.97		659.97	
Dx,g cm-3	1.591		1.591	
Z	4		4	
Mu (mm-1)	1.045		1.045	
F000	1356.0		1356.0	
F000'	1359.01			
h,k,lmax	10,23,20		10,23,20	
Nref	5630		5615	
Tmin, Tmax	0.668,0.891		0.666,0.7	45
Tmin'	0.557			
Correction metho AbsCorr = MULTI-	od= # Reported T L -SCAN	imits: Tm	in=0.666 '	Tmax=0.745
Data completenes	5s= 0.997	Theta(ma	x)= 26.38	7
R(reflections) =	0.0469(4498)	wR2(refl	ections)=	0.1450(5615)
S = 1.057	Npar= 3	373		

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C			
PLAT242_ALERT_2_C Low 'MainMol' Ueq as Compared to Neighb	ors of	C24	Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including	C11	0.142	Check
PLAT260_ALERT_2_C Large Average Ueq of Residue Including	C13	0.142	Check
PLAT480_ALERT_4_C Long HA H-Bond Reported H11B04		2.63	Ang.
PLAT480_ALERT_4_C Long HA H-Bond Reported H25B04	•	2.65	Ang.
PLAT911_ALERT_3_C Missing FCF Refl Between Thmin & STh/L=	0.600	4	Report
PLAT976_ALERT_2_C Check Calcd Resid. Dens. 0.94A From 06		-0.44	eA-3
PLAT976_ALERT_2_C Check Calcd Resid. Dens. 0.85A From 02		-0.40	eA-3

Alert level G		
PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of	C11	Check
PLAT244_ALERT_4_G Low 'Solvent' Ueq as Compared to Neighbors of	C13	Check
PLAT793_ALERT_4_G Model has Chirality at N2 (Centro SPGR)	R	Verify
PLAT793_ALERT_4_G Model has Chirality at N3 (Centro SPGR)	S	Verify
PLAT794_ALERT_5_G Tentative Bond Valency for Cu1 (II) .	2.07	Info
PLAT883_ALERT_1_G No Info/Value for _atom_sites_solution_primary .	Please	Do !
PLAT910_ALERT_3_G Missing # of FCF Reflection(s) Below Theta(Min).	4	Note
PLAT912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600	9	Note
PLAT913_ALERT_3_G Missing # of Very Strong Reflections in FCF	3	Note
PLAT978 ALERT 2 G Number C-C Bonds with Positive Residual Density.	3	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 8 ALERT level C = Check. Ensure it is not caused by an omission or oversight 10 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 18/09/2020; check.def file version of 20/08/2020

Cartesian coordinates and total energies for the geometry optimizations.

- 1. $[Cu(BQEN)(CH_3CN)]^{2+}$ (1) zero point corrected energy=-2842.906094 a.u.
- $Cu = 0.00000 \ \ 0.00000 \ \ 0.00000$
- N 0.32259 1.95803 0.22699
- C -0.63369 2.86842 0.39436
- Н -1.65761 2.50945 0.36577
- N 2.22852 0.00000 -0.21204
- $C \quad -0.36267 \quad 4.23256 \quad 0.60723$
- N 0.00000 0.00000 -2.23633
- C 0.95112 4.65021 0.66186

- Н 1.19386 5.69455 0.83583
- C 1.99882 3.71124 0.48929
- N -0.26048 -1.95745 -0.29828
- C 3.37300 4.06484 0.53487
- Н 3.64689 5.09944 0.71655
- C 4.34108 3.10263 0.35054
- Н 5.39189 3.36949 0.38687
- C 3.97877 1.75594 0.10586
- Н 4.76676 1.02508 -0.04579
- $C \qquad 2.65188 \quad 1.37182 \quad 0.05819$
- C 1.64012 2.34616 0.25869
- C 2.92028 -0.98202 0.66772
- Н 2.46950 -1.96551 0.52564
- Н 2.80515 -0.67711 1.70926
- Н 3.98882 -1.05884 0.43755
- C 2.41430 -0.35806 -1.65345
- Н 2.29511 -1.44153 -1.73889
- Н 3.43306 -0.11580 -1.98032
- C 1.41681 0.35946 -2.55912
- Н 1.51232 1.44291 -2.44801
- Н 1.64448 0.11803 -3.60469
- C -0.94292 0.98118 -2.84082
- Н -1.96836 0.67569 -2.62596

- Н -0.81647 1.05702 -3.92657
- Н -0.75872 1.96509 -2.40662
- C -0.30851 -1.37192 -2.63298
- C -0.47886 -1.75590 -3.94978
- Н -0.40042 -1.02518 -4.74852
- C -0.75663 -3.10251 -4.28768
- C -0.85123 -4.06452 -3.30653
- Н -1.05816 -5.09902 -3.56232
- C -0.67840 -3.71089 -1.94252
- C -0.75366 -4.64955 -0.88308
- Н -0.95028 -5.69380 -1.10830
- C -0.57685 -4.23164 0.41980
- Н -0.62431 -4.92613 1.25079
- C -0.33859 -2.86763 0.66953
- Н -0.21432 -2.50846 1.68616
- C -0.41476 -2.34596 -1.60699
- N -1.38781 0.00103 1.54695
- Н -1.18555 4.92733 0.73100
- Н -0.89011 -3.36946 -5.33059
- C -2.16201 0.00605 2.40784
- C -3.13643 0.01275 3.48941
- Н -3.09353 0.96732 4.02226
- Н -2.91691 -0.79743 4.19131

Н -4.14227 -0.12868 3.08247

- 2. $[Cu(BQPN)(CH_3CN)]^{2+}$ (2) zero point corrected energy=-2882.187576 a.u.
- Cu 0.00000 0.00000 0.00000
- C -2.78468 0.91511 0.63135
- Н -2.28211 1.65455 1.24711
- N -2.01177 0.01351 0.03422
- C -4.18471 0.93734 0.47902
- Н -4.76570 1.69412 0.99393
- N -0.34252 -1.97284 -0.84523
- N 0.25472 1.95706 -0.61489
- C -3.99226 -0.98668 -0.97865
- C -4.78311 0.00299 -0.34219
- Н -5.85781 0.01119 -0.49977
- N 2.10591 0.00000 -0.11349
- C -4.52329 -1.99399 -1.82646
- Н -5.58975 -2.01023 -2.02839
- N 0.00000 0.00000 2.27362
- C -3.68843 -2.94065 -2.37774
- Н -4.09016 -3.71178 -3.02635
- C -2.30172 -2.94324 -2.08515
- Н -1.68900 -3.73548 -2.50161
- C -1.74935 -1.97203 -1.27287

- C -2.58535 -0.96406 -0.73348
- C -0.18183 -3.03886 0.19564
- Н -0.86811 -2.84189 1.01987
- Н 0.83777 -3.04518 0.57783
- Н -0.40410 -4.02462 -0.22751
- C 0.57149 -2.20887 -2.01249
- Н 0.24929 -1.53263 -2.81016
- Н 0.43144 -3.23431 -2.37474
- C 2.05930 -2.00512 -1.72671
- Н 2.41650 -2.68673 -0.94893
- Н 2.58542 -2.31766 -2.63641
- C 2.50419 -0.56861 -1.45802
- Н 3.59722 -0.51204 -1.52705
- Н 2.09661 0.10197 -2.22050
- C 2.74588 -0.76788 0.99603
- Н 2.63755 -0.21016 1.92382
- Н 3.80773 -0.93933 0.79298
- Н 2.26043 -1.73441 1.11120
- C 2.52406 1.41034 -0.08841
- C 3.82239 1.81231 0.15674
- Н 4.59052 1.09084 0.41251
- C 4.18588 3.17835 0.06035
- Н 5.21182 3.46521 0.26493

- C 3.26131 4.12726 -0.31568
- Н 3.54677 5.16968 -0.41712
- C 1.91965 3.74656 -0.58110
- C 0.91643 4.65508 -1.00402
- Н 1.16631 5.70341 -1.13945
- C -0.36011 4.19632 -1.25148
- Н -1.14403 4.86006 -1.59814
- C -0.65232 2.83580 -1.03047
- Н -1.65655 2.46125 -1.19526
- C 1.54607 2.37708 -0.42902
- C -0.10864 0.01833 3.42787
- C -0.24038 0.04017 4.87937
- Н -1.24501 -0.28246 5.16784
- Н -0.06872 1.05377 5.25334