Supporting information

Boosting the photogenerated charge separation of g-C₃N₄ by constructing Ni@Ni₂P cocatalyst with core-shell structure

Lingling Bi, Xiaobo Liang, Lijing Zhang, Jinlong Jiang, Tao Hu, Nannan Wu, and Tengfeng Xie

aCollege of Chemical Engineering, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, China.
bFaculty of Mechanical & Material Engineering, Jiangsu Provincial Engineering Research Center for Biomedical Materials and Advanced Medical Devices, Huaiyin Institute of Technology, Huaian, 223003, China.
cCollege of Chemistry, Jilin University, Changchun, 130012, China.

*Corresponding author: xiaoboliang@126.com, lijingz16@hyit.edu.cn
Fig. S1. Comparison of photocatalytic hydrogen evolution rate of Ni$_2$P@Ni/g-C$_3$N$_4$ photocatalysts with different phosphating time, triethanolamine as sacrificial electron donor under 300 W Xe lamp irradiation.

Fig. S2. XRD patterns of Ni$_2$P@Ni/g-C$_3$N$_4$ photocatalysts with different phosphating time.
Fig. S3. The stability of photocatalytic H$_2$ performance of 50P-Ni under visible light irradiation ($\lambda > 400$ nm).

Fig. S4. Nitrogen gas sorption isotherms and pore size distribution of g-C$_3$N$_4$, Ni/g-C$_3$N$_4$ and Ni@Ni$_2$P/g-C$_3$N$_4$ photocatalysts

Table S1 The BET specific surface area of g-C$_3$N$_4$, Ni/g-C$_3$N$_4$ and Ni@Ni$_2$P/g-C$_3$N$_4$ photocatalysts

<table>
<thead>
<tr>
<th>Samples</th>
<th>g-C$_3$N$_4$</th>
<th>0P-Ni</th>
<th>10P-Ni</th>
<th>20P-Ni</th>
<th>50P-Ni</th>
<th>75P-Ni</th>
</tr>
</thead>
<tbody>
<tr>
<td>BET surface area (m2/g)</td>
<td>13.51</td>
<td>23.77</td>
<td>10.19</td>
<td>10.43</td>
<td>7.72</td>
<td>15.69</td>
</tr>
</tbody>
</table>