Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2022

Tailoring the electrocatalytic activity of porous carbon with heteroatom dopants for the quantification of acetaminophen in pharmaceuticals and biological samples

Narmatha Sivaraman,^{a,b} Velu Duraisamy, ^{a,b} Sakkarapalayam Murugesan Senthil Kumar, ^{a,b} and Rangasamy Thangamuthu* ^{a,b}

^a Electroorganic and Materials Electrochemistry Division (EMED), CSIR-Central Electrochemical Research Institute, Karaikudi-630 003, Tamil Nadu, India.

^b Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India.

1. Chemicals

Acetaminophen (ACAP) and glucose were purchased from Alfa Aesar. Boric acid, dopamine hydrochloride (DA), NaOH were bought from SRL chemicals. Tetraethyl orthosilicate (TEOS), phytic acid (PA) and DMF were purchased from Sigma-Aldrich. Phosphate buffer (0.1 M) was prepared by using NaH₂PO₄ and Na₂HPO₄ from Merck. All the chemicals were exploited as received without further purification. Ultra-pure milli-Q water (18 M Ω cm⁻¹) was utilized throughout the experiments.

2. Characterisations

Prior to electrochemical sensing, porous nature of the prepared materials was characterized by Talos F 200S High-Resolution Transmission Electron Microscope (HR-TEM). Elemental doping was confirmed by (MULTILAB 2000, Thermo Scientific) XPS analysis. The topology of the prepared porous carbon materials was analysed with Field-Emission Scanning Electronic Microscope (FE-SEM; performed with Carl Zeiss AG Supra 55 VP). XRD patterns were recorded on Bruker X-pert diffractometer with Cu Kα radiation. N₂ adsorption–desorption was determined by Brunauer–Emmett–Teller (BET) measurements using Autosorb iQ Station 1 analyzer. Raman spectra were taken by using RM 1000, Renishaw UK Micro Raman Instrument and thermogravimetric analysis was taken by employing SDT Q600 V8.3 Build 101, TA instrument

2.1 Preparation of hard template-SBA-15

47 mL TEOS was added deliberately into a premixed solution of structure directing pluronic-123 polymer ($EO_{20}PO_{70}EO_{20}$) 20 g and 40 mL of HCl. The mixture is blended for about one day at 313 K. The product was kept in an oven at 373 K for 24 h followed by washing with copious amount of water and ethanol and dried. The as-synthesized SBA-15 was aircalcinated at 773 K for 4 h to eliminate structure directing surfactant.

2.2 Preparation of NP-MC

N, P dual-doped micro/mesoporous carbon was synthesized by pore-filling wetimpregnation process. Initially 1.25 g of glucose was dissolved in 5 mL of H₂O. For N and P doping, 0.4 g of DA and specific amount of phytic acid were mixed under stirring. Then, 1 g of SBA-15 was infused into the above mixture for impregnation up to 6 h. In addition, 0.14 g of H₂SO₄ was introduced dropwise with persistent stirring. Afterwards, two step hydrothermal treatment was done starting from 100 °C (6 h), further by increasing 160 °C (6 h). The mixture was taken out after cooling down to room temperature (RT). Separately, 0.8 g of glucose was dissolved with 5 mL water and 0.09 g of H₂SO₄ added to it. Finally, the prepared solution was mixed with the above cooled solution, further hydrothermal process carried out with the abovementioned experimental procedure. The obtained product was washed, dried and transferred to alumina boat crucible and further pyrolyzed at 900 °C about 4 h in a horizontal quartz tube under Ar atmosphere. The carbonized product was blended with 2 M NaOH solution and stirred to remove the SBA-15 template thoroughly. The resultant NP-MC product was washed and dried at 90 °C. The NB-MC was synthesized by the same procedure with the addition of boric acid instead of phytic acid. The N-MC was prepared by the aforementioned procedure in the absence of phytic acid and the MC was synthesized without adding any N and P sources.

2.3 Electrochemical measurements

Prior to modification, glassy carbon working electrode (GCE) has been micro polished using alumina slurry (0.1, 0.03 and 0.05 micron), then cleaned ultrasonically with water and ethanol, respectively. Thereafter, 1 mg of synthesized carbon samples were dispersed into 200 μ L of DMF and ultrasonicated up to 30 mins. Further, thin electroactive layer (3 μ L) of dispersed sample with catalyst loading of 0.214 mg cm⁻² were dropped on cleaned GC surface and sustained at RT until entire solvent vanished. The modified working electrodes were applied to detect ACAP by employing cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chrono amperometry (CA) techniques.

Autolab electrochemical workstation (PGSTAT 302 N) controlled with NOVA 1.11 software was utilized to run electrochemical experiments with a conventional three-electrode cell. GCE was used as a working electrode. Pt wire and saturated calomel electrode (SCE) were employed as counter and reference electrode, respectively. DPV measurements were obtained for applied potential 0.1 V to 0.6 V with sweeping rate of 10 mV s⁻¹, pulse amplitude of 25 mV, modulation time at 0.2 s for electroanalytical operations.

2.4 Real sample analysis

Commercial acetaminophen pills (Cipla-500) were purchased from local drug store and pulverised with mortar. Specific amount of ACAP drug was weighed and dissolved in PBS (pH-7.5) followed by sonication and filtered through Whatman filter paper (Axiva-420R) [24]. Blood serum samples collected from healthy volunteer has been diluted (20 times) using PBS to minimize matrix effect [3]. For analysing exact quantification of ACAP, freshly prepared synthetic urine, saliva and sweat samples were used immediately as reported in the previous literature [25]. The freshly prepared ACAP solution has been spiked into the aforesaid real samples.

Figure S1: Survey spectrum of NP-MC.

Figure S2: XPS spectra of C 1s (A) and O 1s (B) for NP-MC.

Table S1: Pore structure parameters of MC samples

S.No	Carbon	BET-Surface area	Total pore volume	Pore size distribution
	samples	(m ² /g)	(cm ³ /g)	(nm)
1	MC	1020	0.11	4.4
2	N-MC	797	0.132	3
3	NB-MC	808	0.169	4.3
4	NP-MC	970	0.171	3

image of SBA-

Figure S5: Cyclic voltammograms of modified electrodes at 25 mV s⁻¹; (A) $[Fe(CN)_6]^{3-/4-}$ redox system; (B) N₂-saturated 0.1 M PBS with 0.2 mM ACAP.

Figure S6: Cyclic voltammetric curves of NP-MC/GCE, (A) In different Supporting eletrolytes; (B) In different pH from 6.0-9.0.

Figure S7: Plot of (Jpa) vs $(v)^{1/2}$ of NP-MC in 0.1 mM ACAP at different scan rates (5 to 140 mV s⁻¹).

Figure S8: plot of E vs log (υ) of NP-MC in 0.1 mM ACAP at different scan rates from 5 to 140 mV s⁻¹.

Figure S9: (A) linear calibration fit with different ACAP concentration in DPV (B) CA potential optimization study using an addition of 0.1 mM ACAP in 0.1 M PBS (pH-7.5) at various applied potential from 0.25 to 0.6 V over NP-MC/GCE.

Figure S10: DPV interference effect of NP-MC with 10-fold NaCl, KCl, CaCl₂, MgCl₂, CuSO₄, glucose and biomolecules with 5- fold excess of uric acid (UA), dopamine (DA) and ascorbic acid (AA) and (B) Dynamic amperometric stability response of NP-MC upto 2000 s.

Figure S11: (A) Repeatability of NP-MC modified electrode for 10 times with a time interval of 3 min and (B) reproducibility of NP-MC modified electrode with 6 different electrodes in 0.1 mM ACAP.

Materials	Linear range	Electrochemical	LOD (µM)	Sensitivity	ref
		Technique			
N-CMOS	0.1-80 µM	DPV	0.0303	1.971 μA	[1]
				$\mu M^{-1} \text{ cm}^{-2}$	
N-MWCNT	0.118-0.907	CV	0.485	0.601 A	[2]
	mM			$M^{-1} cm^{-2}$	
Pd/POMs/NHCSs	0.02 μM - 0.083	DPV	0.003	508.46 µA	[3]
composite	mM			mM^{-1}	
NP-CM	0.07 µM - 30	DPV	0.04	19.3 µA	[4]
	μΜ			$\mu M^{-1} cm^{-2}$	
H-C/N@TiO ₂	0.3–50 μM	DPV	0.05	NR	[5]
NCDs	0.5 - 600 μΜ	DPV	0.157	NR	[6]
	0.05 μM - 2.250	Amperometry	0.041		
	mM				
NG-BDD	0.02-50 μM	DPV	0.005	NR	[7]
P-NC/GCE	3–110 µM	DPV	0.5	NR	[8]
NP-MC	1-200 μM	DPV	0.038	13.21 µA	
				μ M ⁻¹ cm ⁻²	This
	3-4000 μM	Amperometry	0.027	36.14 µA	work
1			1	1	1
	Materials N-CMOS N-CMOS Pd/POMs/NHCSs composite NP-CM TiO2 NCDs NCDs NG-BDD P-NC/GCE NP-MC	Materials Linear range N-CMOS 0.1-80 µM N-CMOS 0.118–0.907 N-MWCNT 0.0118–0.907 Pd/POMs/NHCSs 0.02 µM - 0.083 composite mM NP-CM 0.07 µM - 30 NP-CM 0.07 µM - 30 H–C/N@TiO2 0.3–50 µM NCDs 0.05 µM - 2.250 MM 0.02–50 µM NG-BDD 0.02–50 µM P-NC/GCE 3–110 µM NP-MC 1-200 µM	Materials Linear range Electrochemical Technique N-CMOS 0.1-80 µM DPV N-MWCNT 0.118–0.907 CV N-MWCNT 0.118–0.907 CV Pd/POMs/NHCSs 0.02 µM - 0.083 DPV composite MM 1 NP-CM 0.07 µM - 30 DPV MM 1 1 NP-CM 0.07 µM - 30 DPV MM 1 1 NP-CM 0.3–50 µM DPV MCDs 0.5 - 600 µM DPV NCDs 0.5 - 600 µM DPV MM 1 1 1 NCDs 0.5 - 600 µM DPV MM 1 1 1 NCP-BDD 0.02–50 µM DPV P-NC/GCE 3–110 µM DPV NP-MC 1-200 µM DPV Maperometry Image Image NP-MC 1-200 µM Maperometry	Materials Linear range Electrochemical LOD (µM) N-CMOS 0.1-80 µM DPV 0.0303 N-CMOS 0.118–0.907 CV 0.485 MM 0.0303 0 N-MWCNT 0.118–0.907 CV 0.485 MM 0.0303 0 Pd/POMs/NHCSs 0.02 µM - 0.083 DPV 0.003 composite mM 0.004 0.004 MP-CM 0.07 µM - 30 DPV 0.04 µM 0.09 0.005 0.05 ML-C/N@TiO2 0.3–50 µM DPV 0.05 NCDs 0.5 - 600 µM DPV 0.157 NCDs 0.02–50 µM DPV 0.041 mM	Materials Linear range Electrochemical Technique LOD (μM) Sensitivity N-CMOS 0.1-80 μM DPV 0.0303 1.971 μA μ M ⁻¹ cm ⁻² N-MWCNT 0.118–0.907 CV 0.485 0.601 A M^{-1} cm ⁻² Pd/POMs/NHCSs 0.02 μM - 0.083 DPV 0.003 508.46 μA M ⁻¹ cm ⁻² Pd/POMs/NHCSs 0.02 μM - 0.083 DPV 0.003 508.46 μA mM ⁻¹ cm ⁻² Pd/POMs/NHCSs 0.02 μM - 0.083 DPV 0.004 19.3 μA μM ⁻¹ cm ⁻² NP-CM 0.07 μM - 30 DPV 0.04 19.3 μA μM ⁻¹ cm ⁻² M-C/N@TiO ₂ 0.3–50 μM DPV 0.05 NR NCDs 0.5 - 600 μM DPV 0.157 NR NCDs 0.5 - 600 μM DPV 0.041 1.200 NG-BDD 0.02–50 μM DPV 0.005 NR P-NC/GCE 3–110 μM DPV 0.038 13.21 μA μM ⁻¹ cm ⁻² NP-MC 1-200 μM Amperometry 0.027 36.14 μA

 Table S2: Comparison of analytical parameters of different modified electrode for the detection of ACAP.

NR- Not reported; H–C/N@TiO₂ -Nitrogen-doped Carbon@TiO₂ double-shelled hollow spheres; N-CMOS - N-doped carbon dots/manganese oxide; N-MWCNT - Nitrogen-doped MWCNTs; Pd/POMs/NHCSs composite- Pd/Polyoxometalate/Nitrogen-doping Hollow Carbon Spheres; NP-CM- N, P-co-doped carbon microspheres; NCD- Nitrogen doped carbon dots; NG-BDD Graphite/Boron-Doped diamond; P-NC/GCE – Nitrogen rich porous carbon.

Samples	Added ACAP	Found ACAP	Recovery (%)	RSD
	(μM)	(μM)		
Human blood				
serum samples	10	9.51	95.1	2.30
and the second	20	18.91	94.5	1.62
	30	29.56	98.5	2.35
ACAP tablet				
	10	10.5	105	3.51
	20	19.71	98.5	2.65
	30	29.2	97.3	2.39
Synthetic urine				
samples	10	9.85	98.5	4.10
	20	18.63	93.15	3.62
	30	28.65	95.5	2.98
Synthetic sweat				
samples	10	10.4	104	3.69
	20	18.9	94.5	3.68
	30	31.8	106	4.03
Synthetic saliva				
samples	10	9.68	96.8	2.78
	20	21.0	105	4.32
	30	29.6	98.6	1.63

Table S3: Detection of ACAP in blood serum, pharmaceutical tablets and synthetic sweat,

saliva and urine samples.

References

- Y. Feng, Y. Li, S. Yu, Q. Yang, Y. Tong, B.C. Ye, Electrochemical sensor based on N-doped carbon dots decorated with manganese oxide nanospheres for simultaneous detection of: P -aminophenol and paracetamol, Analyst. 146 (2021) 5135–5142. https://doi.org/10.1039/d1an00966d.
- N.G. Tsierkezos, S.H. Othman, U. Ritter, Nitrogen-doped multi-walled carbon nanotubes for paracetamol sensing, Ionics (Kiel). 19 (2013) 1897–1905. https://doi.org/10.1007/s11581-013-0930-1.
- [3] L. Wang, T. Meng, J. Sun, S. Wu, M. Zhang, H. Wang, Y. Zhang, Development of Pd/Polyoxometalate/nitrogen-doping hollow carbon spheres tricomponent nanohybrids: A selective electrochemical sensor for acetaminophen, Anal. Chim. Acta. 1047 (2019) 28–35. https://doi.org/https://doi.org/10.1016/j.aca.2018.09.042.
- X. Liu, W. Li, T. Zeng, S. Zhang, B. Zhou, M. Li, P. Zhao, C. Peng, Sensitive Detection of Acetaminophen Based on N, P-Co-Doped Carbon Microspheres Modified Electrode, J. Electrochem. Soc. 166 (2019) B1491–B1496. https://doi.org/10.1149/2.0381915jes.
- [5] H. Yang, G. Cao, Y. Huang, Y. Lin, F. Zheng, L. Lin, F. Liu, S. Li, Nitrogen-doped Carbon@TiO2 double-shelled hollow spheres as electrochemical sensor for simultaneous determination of dopamine and paracetamol in human serum and saliva, J. Pharm. Anal. (2021). https://doi.org/10.1016/j.jpha.2021.08.005.
- [6] L. Fu, A. Wang, G. Lai, C. Te Lin, J. Yu, A. Yu, Z. Liu, K. Xie, W. Su, A glassy carbon electrode modified with N-doped carbon dots for improved detection of hydrogen peroxide and paracetamol, Microchim. Acta. 185 (2018) 0–6. https://doi.org/10.1007/s00604-017-2646-9.
- [7] P. Wang, X. Yuan, Z. Cui, C. Xu, Z. Sun, J. Li, J. Liu, Y. Tian, H. Li, A Nanometer-Sized Graphite / Boron-Doped Diamond Electrochemical Sensor for Sensitive Detection of Acetaminophen, (2021). https://doi.org/10.1021/acsomega.0c06141.
- [8] W. Liang, L. Liu, Y. Li, H. Ren, T. Zhu, Y. Xu, B.C. Ye, Nitrogen-rich porous carbon modified electrochemical sensor for the detection of acetaminophen, J. Electroanal. Chem. 855 (2019) 113496. https://doi.org/10.1016/j.jelechem.2019.113496.