Electronic Supplementary Information

Induced Cytotoxicity of Peptides with Crypto-Thioester by Native Chemical Ligation

Jeonghun Lee, *^{,a} Eun-Taex Oh,^b Jinhyeok Kim,^a Kitae Kim,^a Heon Joo Park,^c and Chulhee Kim^{*,a}

^aDepartment of Polymer Science and Engineering, Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Korea

^bDepartment of Biomedical Sciences, College of Medicine, Inha University, Incheon 22212,

Korea

^cDepartment of Microbiology, Research Center for Controlling Intracellular Communication,

Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Korea

*Corresponding Author: jeonghunlee@inha.ac.kr, chk@inha.ac.kr

Experimental Section

Circular dichroism. Circular dichroism spectra were recorded on a Jasco J-815 spectropolarimeter (Tokyo, Japan) between 190 and 250 nm at room temperature using a quartz cell with 1 mm path length. The concentration of peptides was 30 μ M in PBS buffer (1 mM, pH 7.4) or in PBS/TFE mixed solvent (1:1, v/v). Five scans with a scan speed of 20 nm/min were averaged for each measurement. The percentage α -helicity was calculated from the mean residue ellipticity at 222 nm using following equation:

%helicity =
$$[\theta]_{222} / [\theta]_{max} \times 100$$

$$[\theta]_{\text{max}} = -40,000 \times (1 - 4 / n)$$

where $[\theta]_{222}$ is the mean residue ellipticity, $[\theta]_{max}$ is the maximal mean residue ellipticity and n is the number of amino acids.^{1, 2}

Cell lines and culture conditions. H1299 human lung adenocarcinoma cells were purchased from the American Type Culture Collection (ATCC) and cultured in RPMI-1640 medium. Cells were incubated at 37 °C in a 5% CO_2 -containing humidified incubator.

References

- 1 W. C. Johnson, Jr. and I. Tinoco, Jr., J. Am. Chem. Soc., 1972, 94, 4389-4390.
- 2 J. R. Kumita, O. S. Smart and G. A. Woolley, Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 3803-3808.

Fig. S1 Synthetic route to KLA-C-1 peptide.

Fig. S2 Synthetic route to KLA-C-2 peptide.

Fig. S3 Synthetic route to KLA-T-1 peptide.

Fig. S4 Synthetic route to KLA-T-2 peptide.

Fig. S5 LC-Mass spectrum of KLA-C-1.

Fig. S10 LC-Mass spectrum of KLA-2.